Supersymmetric BRST cohomology

$$
\begin{gathered}
\text { F. Brandt } \\
\text { arXiv:1201.3638 }
\end{gathered}
$$

Context / applications:

- Quantum field theory: classification of candidate counterterms and anomalies; " algebraic renormalization"
- Classical field theory: classification of conservation laws and consistent deformations

Outline:

- Supersymmetry algebra cohomology (SAC)
- Descent equations
- Elimination of trivial pairs
- Emergence of SAC in local BRST cohomology
- SUSY ladder equations
- Example in $\mathrm{D}=2$
- Comparision to Lie algebra cohomology

Supersymmetry algebra cohomology (SAC)

Supersymmetry (SUSY) algebra, represented on "generalized tensors" \tilde{T} :

$$
\left[P_{a}, P_{b}\right]=0, \quad\left[P_{a}, Q_{\underline{\alpha}}^{i}\right]=0, \quad\left\{Q_{\underline{\alpha}}^{i}, Q_{\underline{\beta}}^{j}\right\}=M^{i j}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} P_{a}
$$

SUSY differential:

$$
s_{\text {susy }}=c^{a} P_{a}+\xi_{i}^{\underline{\alpha}} Q_{\underline{\alpha}}^{i}-\frac{1}{2} M^{i j}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} \xi_{i}^{\underline{\alpha}} \xi_{j}^{\frac{\beta}{j}} \frac{\partial}{\partial c^{a}}, \quad\left(s_{\text {susy }}\right)^{2}=0
$$

c^{a} : anticommuting translation ghosts, $a=1, \ldots, D$
$\xi_{i}^{\underline{\alpha}}$: commuting SUSY ghosts, $\underline{\alpha}=\underline{1}, \ldots, \underline{2\lfloor D / 2\rfloor}, i=1, \ldots, N$
SAC:

$$
H\left(s_{\text {susy }}\right)=\frac{\text { kernel of } s_{\text {susy }} \text { in } \Omega}{\text { image of } s_{\text {susy }} \text { in } \Omega}
$$

Representatives of SAC:

$$
s_{\text {susy }} \omega=0, \quad \omega \sim \omega+s_{\text {susy }} \eta, \quad \omega, \eta \in \Omega
$$

Ω : space of polynomials $\omega(c, \xi, \widetilde{T})$ or similar

Descent equations

Local BRST-cohomology $H(s \mid d)$, descent equations:

$$
\left.\begin{array}{rcc}
s \omega_{D}+d \omega_{D-1} & = & 0 \\
s \omega_{D-1}+d \omega_{D-2} & = & 0 \\
& \vdots & \\
s \omega_{m} & = & 0
\end{array}\right\} \Leftrightarrow(s+d) \tilde{\omega}=0, \tilde{\omega}=\sum_{p=m}^{D} \omega_{p}
$$

In general: descent is trivial, ascent is generally obstructed
\Rightarrow generally, the relation of $H(s)$ and $H(s \mid d)$ is subtle, $H(s)$ and $H(s+d)$ differ substantially.

In standard supersymmetric field theories (when s contains SUSY): the relation between $H(s), H(s \mid d)$ and $H(s+d)$ is direct. In particular:

$$
s \omega=0 \Rightarrow(s+d) \tilde{\omega}=0 \text { with } \tilde{\omega}=\omega\left(c^{a} \rightarrow c^{a}+d x^{a}\right)
$$

Reason: $s=c^{a} \partial_{a}+\ldots,(s+d)=\left(c^{a}+d x^{a}\right) \partial_{a}+\ldots$
$\Rightarrow H(s)$ contains all relevant information on $H(s \mid d)$.
$H\left(s_{\text {susy }}\right)$ contributes to $H(s)$ and thus also directly to $H(s \mid d)$.

Elimination of trivial pairs

Useful method to analyse the local BRST cohomology: construction of variables $u^{\ell}, v^{\ell}, w^{I}$ s.t.

$$
(s+d) u^{\ell}=v^{\ell}\left(\Rightarrow(s+d) v^{\ell}=0\right), \quad(s+d) w^{I}=r^{I}(w)
$$

This implies, with $\mathcal{F}=\{f(u, v, w)\}, \mathcal{F}_{u, v}=\{f(u, v)\}, \mathcal{F}_{w}=\{f(w)\}$:

$$
H(s+d, \mathcal{F})=H\left(s+d, \mathcal{F}_{u, v}\right) \times H\left(s+d, \mathcal{F}_{w}\right)
$$

Usually (at least locally):

$$
H\left(s+d, \mathcal{F}_{u, v}\right) \simeq \mathbb{K}(=\mathbb{R} \text { or } \mathbb{C}) \Rightarrow H(s+d, \mathcal{F}) \simeq H\left(s+d, \mathcal{F}_{w}\right)
$$

Typically:

$$
\begin{aligned}
\left\{u^{\ell}\right\} & =\left\{A_{\mu}, \phi^{\star}, \ldots\right\}, \\
\left\{v^{\ell}\right\} & =\left\{\partial_{\mu} C+\cdots, \frac{\delta \mathcal{L}}{\delta \phi}+\cdots, \ldots\right\} \\
\left\{w^{I}\right\} & =\left\{\widetilde{T}^{A}, \widetilde{C}^{N}\right\} \text { with } \widetilde{T}^{A}=T^{A}+\cdots, \widetilde{C}^{N}=C^{N}+\cdots
\end{aligned}
$$

with

$$
\begin{aligned}
& (s+d) A_{\mu}=\partial_{\mu} C+\cdots, \quad(s+d) \phi^{\star}=\frac{\delta \mathcal{L}}{\delta \phi}+\cdots \\
& (s+d) \tilde{T}^{A}=\widetilde{C}^{N} \Delta_{N} \widetilde{T}^{A}, \quad(s+d) \widetilde{C}^{N}= \pm \frac{1}{2} \widetilde{C}^{K} \widetilde{C}^{L} \mathcal{F}_{L K}{ }^{N}(\widetilde{T}), \\
& {\left[\Delta_{K}, \Delta_{L}\right]_{ \pm}=\mathcal{F}_{K L}{ }^{N}(\widetilde{T}) \Delta_{N}}
\end{aligned}
$$

Emergence of SAC in local BRST cohomology

SAC arises within the linearized problem $H\left(s^{(0)}, \mathcal{F}_{w}\right)$ corresponding to

$$
\begin{aligned}
& s^{(0)} \tilde{T}^{A}=\tilde{C}^{N} \Delta_{N}^{(0)} \tilde{T}^{A}, \quad s^{(0)} \tilde{C}^{N}= \pm \frac{1}{2} \tilde{C}^{K} \tilde{C}^{L} f_{L K}, \\
& {\left[\Delta_{K}^{(0)}, \Delta_{L}^{(0)}\right]_{ \pm}=f_{K L} \Delta_{N}^{(0)} \quad\left(f_{K L}^{N}=\text { constant }\right)}
\end{aligned}
$$

- SAC always emerges in this way within the local BRST cohomological analysis of standard supersymmetric field theories,
- both for global and local SUSY
- whether or not the algebra of SUSY transformations closes offshell and/or modulo (other) gauge transformations
- Existence proof for variables \tilde{T} : FB, Lett. Math. Phys. 55 (2001) 149 [arXiv:math-ph/0103006]
- If the antifields are not eliminated as members of trivial pairs, the SAC arises as a "weak cohomology" (cohomology on-shell)

SUSY ladder equations

Strategy to compute SAC:
Decomposition in c-degree N_{c} ($=$ degree in the translation ghosts)

$$
\begin{aligned}
& s_{\text {susy }}=d_{c}+d_{\xi}+s_{\mathrm{gh}} \\
& d_{c}=c^{a} P_{a}, d_{\xi}=\xi_{i}^{\underline{\alpha}} Q_{\underline{\alpha}}^{i}, \quad s_{\mathrm{gh}}=-\frac{1}{2} M^{i j}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} \xi_{i}^{\alpha} \xi_{j}^{\frac{\beta}{j}} \frac{\partial}{\partial c^{a}} \\
& \omega=\sum_{p=m}^{M} \omega^{p}, \quad N_{c} \omega^{p}=p \omega^{p}
\end{aligned}
$$

SUSY ladder equations:

$$
s_{\text {susy }} \omega=0 \Leftrightarrow\left\{\begin{array}{l}
0=s_{\mathrm{gh}} \omega^{m} \\
0=d_{\xi} \omega^{m}+s_{\mathrm{gh}} \omega^{m+1} \\
0=d_{c} \omega^{p}+d_{\xi} \omega^{p+1}+s_{\mathrm{gh}} \omega^{p+2} \\
0=d_{c} \omega^{M-1}+d_{\xi} \omega^{M} \\
0=d_{c} \omega^{M}
\end{array} \text { for } m \leq p \leq M-2\right.
$$

Compute $H\left(s_{\mathrm{gh}}\right)$ ("primitive elements" of SAC) and use the result to compute \boldsymbol{H} ($s_{\text {susy }}$) (spectral sequence technique)

Remark: analysis of the ladder eqs. is nontrivial only in c-degrees where $H\left(s_{\text {gh }}\right)$ does not vanish; typically (always?) these c-degrees are $\leq D / 2$.

Example in $D=2$

SUSY algebra in $D=2$ for Minkowski signature ($-1,1$),
$\Gamma^{1}=-\mathrm{i} \sigma_{1}, \Gamma^{2}=\sigma_{2}, C=\sigma_{2}, M^{i j} \equiv-\mathrm{i} \delta^{i j}$,
$\left(Q_{\underline{1}}, Q_{\underline{2}}\right)=\left(Q_{+}, Q_{-}\right)$(two real Majorana-Weyl SUSYs):

$$
\left(Q_{+}\right)^{2}=-\frac{i}{2}\left(P_{1}+P_{2}\right),\left(Q_{-}\right)^{2}=\frac{i}{2}\left(P_{1}-P_{2}\right),\left\{Q_{+}, Q_{-}\right\}=0
$$

Lagrangian for real boson φ and fermion $\left(\psi_{\underline{1}}, \psi_{\underline{2}}\right)=\left(\psi_{+}, \psi_{-}\right)$:

$$
\begin{aligned}
L & =-\frac{1}{2} \eta^{a b} \partial_{a} \varphi \partial_{b} \varphi-\mathrm{i} \psi^{\underline{\alpha}}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} \partial_{a} \psi \underline{\beta} \\
& =\frac{1}{2}\left(\partial_{1} \varphi\right)^{2}-\frac{1}{2}\left(\partial_{2} \varphi\right)^{2}+\mathrm{i} \psi_{-}\left(\partial_{1}+\partial_{2}\right) \psi_{-}-\mathrm{i} \psi_{+}\left(\partial_{1}-\partial_{2}\right) \psi_{+}
\end{aligned}
$$

The action $\int d x^{1} d x^{2} L$ is invariant under the symmetry transformations

$$
\begin{aligned}
& \delta_{a} \varphi=\partial_{a} \varphi, \quad \delta_{a} \psi_{\underline{\alpha}}=\partial_{a} \psi_{\underline{\alpha}}, \quad \delta_{\underline{\alpha}} \varphi=\psi_{\underline{\alpha}}, \delta_{\underline{\alpha}} \psi_{\underline{\beta}}=-\frac{\mathrm{i}}{2}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} \partial_{a} \varphi \\
& \delta_{ \pm} \varphi=\psi_{ \pm}, \delta_{+} \psi_{+}=-\frac{\mathrm{i}}{2}\left(\partial_{1}+\partial_{2}\right) \varphi, \delta_{-} \psi_{-}=\frac{\mathrm{i}}{2}\left(\partial_{1}-\partial_{2}\right) \varphi, \delta_{ \pm} \psi_{\mp}=0
\end{aligned}
$$

SUSY algebra holds only on-shell, e.g.:

$$
\left(\delta_{+}\right)^{2} \psi_{-}=0 \approx-\frac{i}{2}\left(\partial_{1}+\partial_{2}\right) \psi_{-}
$$

(Extended) BRST transformations for the example

$$
\begin{aligned}
s \varphi & =c^{a} \partial_{a} \varphi+\xi^{+} \psi_{+}+\xi^{-} \psi_{-} \\
s \psi_{+} & =c^{a} \partial_{a} \psi_{+}-\frac{\mathrm{i}}{2} \xi^{+} \partial_{+} \varphi+\frac{1}{4} \xi^{-} \xi^{-} \psi_{+}^{\star}-\frac{1}{4} \xi^{+} \xi^{-} \psi_{-}^{\star} \\
s \psi_{-} & =c^{a} \partial_{a} \psi_{-}+\frac{\mathrm{i}}{2} \xi^{-} \partial_{-} \varphi+\frac{1}{4} \xi^{+} \xi^{+} \psi_{-}^{\star}-\frac{1}{4} \xi^{+} \xi^{-} \psi_{+}^{\star} \\
s \varphi^{\star} & =-\partial_{+} \partial_{-} \varphi+c^{a} \partial_{a} \varphi^{\star}-\frac{\mathrm{i}}{2} \xi^{+} \partial_{+} \psi_{+}^{\star}+\frac{\mathrm{i}}{2} \xi^{-} \partial_{-} \psi_{-}^{\star} \\
s \psi_{+}^{\star} & =2 \mathrm{i} \partial_{-} \psi_{+}+c^{a} \partial_{a} \psi_{+}^{\star}+\xi^{+} \varphi^{\star} \\
s \psi_{-}^{\star} & =-2 \mathrm{i} \partial_{+} \psi_{-}+c^{a} \partial_{a} \psi_{-}^{\star}+\xi^{-} \varphi^{\star} \\
s c^{+} & =\mathrm{i} \xi^{+} \xi^{+} \\
s c^{-} & =-\mathrm{i} \xi^{-} \xi^{-} \\
s \xi^{ \pm} & =0
\end{aligned}
$$

where $\varphi^{\star}, \psi_{+}^{\star}, \psi_{-}^{\star}$ are the antifields to $\varphi, \psi_{+}, \psi_{-}$and

$$
\partial_{ \pm}=\partial_{1} \pm \partial_{2}, c^{ \pm}=c^{1} \pm c^{2}, c^{a} \partial_{a}=c^{1} \partial_{1}+c^{2} \partial_{2}=\frac{1}{2}\left(c^{+} \partial_{+}+c^{-} \partial_{-}\right)
$$

On all fields and antifields:

$$
s^{2}=0
$$

Appropriate variables for computing $\boldsymbol{H}(s)$

"Trivial pairs": BRST-doublets $\left\{u^{\ell}, v^{\ell}\right\}$ with $v^{\ell}=s u^{\ell}$:

$$
\begin{aligned}
& \left\{u^{\ell}\right\}=\left\{\partial_{+}^{m} \partial_{-}^{n} \varphi^{\star}, \partial_{+}^{m} \partial_{-}^{n} \psi_{+}^{\star}, \partial_{+}^{m} \partial_{-}^{n} \psi_{-}^{\star} \mid m, n=0,1,2, \ldots\right\} \\
& s \partial_{+}^{m} \partial_{-}^{n} \varphi^{\star}=-\partial_{+}^{m+1} \partial_{-}^{n+1} \varphi+\ldots \\
& s \partial_{+}^{m} \partial_{-}^{n} \psi_{+}^{\star}=2 \mathrm{i} \partial_{+}^{m} \partial_{-}^{n+1} \psi_{+}+\ldots \\
& s \partial_{+}^{m} \partial_{-}^{n} \psi_{-}^{\star}=-2 \mathrm{i} \partial_{+}^{m+1} \partial_{-}^{n} \psi_{-}+\ldots
\end{aligned}
$$

where $\partial_{+}^{m}=\partial_{+} \cdots \partial_{+}$etc
"Nontrivial variables" $\left\{w^{I}\right\}=\left\{c^{+}, c^{-}, \xi^{+}, \xi^{-}, \widetilde{T}^{A}\right\}$ with $s w^{I}=r^{I}(w)$:

$$
\begin{aligned}
& \left\{\widetilde{T}^{A}\right\}=\left\{\varphi_{(0,0)}, \varphi_{(m+1,0)}, \varphi_{(0, m+1)}, \psi_{+(m, 0)}, \psi_{-(0, m)} \mid m=0,1,2, \ldots\right\} \\
& \varphi_{(0,0)}=\varphi \\
& \varphi_{(m+1,0)}=\partial_{+}^{m}\left(\partial_{+} \varphi-\frac{i}{2} \xi^{-} \psi_{-}^{\star}+\frac{1}{2} c^{-} \varphi^{\star}\right) \\
& \varphi_{(0, m+1)}=\partial_{-}^{m}\left(\partial_{-} \varphi+\frac{i}{2} \xi^{+} \psi_{+}^{\star}-\frac{1}{2} c^{+} \varphi^{\star}\right) \\
& \psi_{+(m, 0)}=\partial_{+}^{m}\left(\psi_{+}-\frac{i}{4} c^{-} \psi_{+}^{\star}\right) \\
& \psi_{-(0, m)}=\partial_{-}^{m}\left(\psi_{-}+\frac{i}{4} c^{+} \psi_{-}^{\star}\right)
\end{aligned}
$$

BRST transformations of the \tilde{T}^{A} and SUSY algebra

$$
s \tilde{T}^{A}=s \text { susy } \widetilde{T}^{A}=\left(\frac{1}{2} c^{+} P_{+}+\frac{1}{2} c^{-} P_{-}+\xi^{+} Q_{+}+\xi^{-} Q_{-}\right) \tilde{T}^{A}
$$

\widetilde{T}^{A}	$\varphi_{(0,0)}$	$\varphi_{(m+1,0)}$	$\varphi_{(0, m+1)}$	$\psi_{+(m, 0)}$	$\psi_{-(0, m)}$
$P_{+} \tilde{T}^{A}$	$\varphi_{(1,0)}$	$\varphi_{(m+2,0)}$	0	$\psi_{+(m+1,0)}$	0
$P_{-} \widetilde{T}^{A}$	$\varphi_{(0,1)}$	0	$\varphi_{(0, m+2)}$	0	$\psi_{-(0, m+1)}$
$Q_{+} \tilde{T}^{A}$	$\psi_{+(0,0)}$	$\psi_{+(m+1,0)}$	0	$-\frac{1}{2} \varphi_{(m+1,0)}$	0
$Q_{-} \widetilde{T}^{A}$	$\psi_{-(0,0)}$	0	$\psi_{-(0, m+1)}$	0	$\frac{1}{2} \varphi_{(0, m+1)}$

with $P_{ \pm}=P_{1} \pm P_{2}$. SUSY algebra:

$$
\begin{aligned}
& {\left[P_{+}, P_{-}\right]=\left[P_{+}, Q_{+}\right]=\left[P_{+}, Q_{-}\right]=\left[P_{-}, Q_{+}\right]=\left[P_{-}, Q_{-}\right]=0,} \\
& \left(Q_{+}\right)^{2}=-\frac{i}{2} P_{+}, \quad\left(Q_{-}\right)^{2}=\frac{i}{2} P_{-}, \quad\left\{Q_{+}, Q_{-}\right\}=0
\end{aligned}
$$

Notice: P_{+}and P_{-}map half of the generalized tensors $\varphi_{(m+1,0)}$, $\varphi_{(0, m+1)}, \psi_{+(m, 0)}, \psi_{-(0, m)}$ to zero respectively and correspond to the action of ∂_{+}and ∂_{-}on-shell (owing to $\partial_{+}\left(\partial_{-}\right)^{m+1} \varphi \approx 0$ etc)

Computation and result of $H(s)$

1. The trivial pairs drop from $H(s): H(s) \simeq H$ (ssusy)
2. Computation of $H\left(s_{\mathrm{gh}}\right)$. Result:

$$
\begin{aligned}
& s_{\mathrm{gh}} f(c, \xi)=0 \Leftrightarrow f(c, \xi) \sim a+\xi^{+} a_{+}+\xi^{-} a_{-}+\xi^{+} \xi^{-} a_{+-} ; \\
& a+\xi^{+} a_{+}+\xi^{-} a_{-}+\xi^{+} \xi^{-} a_{+-} \sim 0 \Leftrightarrow a=a_{+}=a_{-}=a_{+-}=0
\end{aligned}
$$

3. Computation of H (ssusy) by analysis of the ladder equations:
cocycles :
$s_{\mathrm{gh}} \omega^{m}=0 \Rightarrow m=0, \omega^{0}=a(\tilde{T})+\xi^{+} a_{+}(\widetilde{T})+\xi^{-} a_{-}(\widetilde{T})+\xi^{+} \xi^{-} a_{+-}(\tilde{T})$
$d_{\xi} \omega^{0}+s_{\mathrm{gh}} \omega^{1}=0 \Rightarrow Q_{+} a(\tilde{T})=Q_{-} a(\tilde{T})=0, Q_{-} a_{+}(\tilde{T})+Q_{+} a_{-}(\tilde{T})=0$
$\Rightarrow\left\{\begin{array}{l}\mathrm{gh}=0: \quad \omega=a=\mathrm{constant} \\ \mathrm{gh}=1: \quad \omega \sim\left(\xi^{+}+\mathrm{i} c^{+} Q_{+}\right) a_{+}(\tilde{T})+\left(\xi^{-}-\mathrm{i} c^{-} Q_{-}\right) a_{-}(\tilde{T}) \\ \mathrm{gh}=2: \quad \omega \sim\left(\xi^{+} \xi^{-}+\mathrm{i} c^{+} \xi^{-} Q_{+}-\mathrm{i} c^{-} \xi^{+} Q_{-}-c^{+} c^{-} Q_{+} Q_{-}\right) a_{+-}(\tilde{T}) \\ \mathrm{gh}>2: \quad \omega \sim 0\end{array}\right.$
coboundaries :

$$
\begin{aligned}
& \mathrm{gh}=1: \omega \sim 0 \Leftrightarrow a_{+}(\tilde{T})=Q_{+} b(\tilde{T}) \wedge a_{-}(\tilde{T})=Q_{-} b(\tilde{T}) \\
& \mathrm{gh}=2: \omega \sim 0 \Leftrightarrow a_{+-}(\widetilde{T})=Q_{-} b_{+}(\tilde{T})+Q_{+} b_{-}(\widetilde{T})
\end{aligned}
$$

Sample solutions

Simple examples:

$$
\begin{aligned}
\mathrm{gh}=2: a_{+-}(\tilde{T})= & f(\varphi) \Rightarrow \\
\omega= & \xi^{+} \xi^{-} f(\varphi)+\mathrm{i}\left(c^{+} \xi^{-} \psi_{+(0,0)}-c^{-} \xi^{+} \psi_{-(0,0)}\right) f^{\prime}(\varphi) \\
& -c^{+} c^{-} \psi_{+(0,0)} \psi_{-(0,0)} f^{\prime \prime}(\varphi) \\
\omega_{2}= & -d x^{+} d x^{-}\left[\psi_{+} \psi_{-} f^{\prime \prime}(\varphi)+\frac{1}{4}\left(\psi_{-}^{\star} \xi^{+}-\psi_{+}^{\star} \xi^{-}\right) f^{\prime}(\varphi)\right] \\
\mathrm{gh}=1: a_{+}(\widetilde{T})= & \psi_{+(0,0)}, a_{-}(\widetilde{T})=-\psi_{-(0,0)} \Rightarrow \\
\omega= & \xi^{+} \psi_{+(0,0)}-\xi^{-} \psi_{-(0,0)}+\frac{1}{2}\left(c^{+} \varphi_{(1,0)}-c^{-} \varphi_{(0,1)}\right) \\
\omega_{1}= & \frac{1}{2}\left(d x^{+} \partial_{+}-d x^{-} \partial_{-}\right) \varphi+\cdots=\left(d x^{1} \partial_{2}+d x^{2} \partial_{1}\right) \varphi+\ldots \\
\omega_{2}= & -\frac{1}{2} d x^{+} d x^{-} \varphi^{\star}=d x^{1} d x^{2} \varphi^{\star}
\end{aligned}
$$

More complicated example:

$$
\begin{aligned}
a_{+-}(\widetilde{T}) & =\varphi_{(1,0)} \psi_{+}(0,0) \varphi_{(0,1)} \psi_{-}(0,0) \Rightarrow \\
\omega_{2} & =d x^{+} d x^{-}\left(\frac{i}{2} \partial_{+} \varphi \partial_{+} \varphi+\psi_{+} \partial_{+} \psi_{+}\right)\left(\psi_{-} \partial_{-} \psi_{-}-\frac{i}{2} \partial_{-} \varphi \partial_{-} \varphi\right)+\ldots
\end{aligned}
$$

Comparision to Lie algebra cohomology (LAC)

Semisimple Lie algebra:

$$
\left[\delta_{i}, \delta_{j}\right]=f_{i j}{ }^{k} \delta_{k}
$$

BRST-type differential:

$$
s_{\text {Lie }}=C^{i} \delta_{i}+\frac{1}{2} C^{j} C^{k} f_{k j} \frac{\partial}{\partial C^{i}}
$$

LAC:

$$
\begin{array}{r}
s_{\text {Lie }} \omega(C, T)=0 \Leftrightarrow \\
\quad \omega(C, T)=s_{\text {Lie }} \eta(C, T)+\sum_{r} f^{r}(C) g_{r}(T) \\
\text { with } s_{\text {Lie }} f^{r}(C)=0 \wedge s_{\text {Lie }} g_{r}(T)=0
\end{array}
$$

i.e., the representatives of the LAC factorize in $C s$ and $T \mathrm{~s}$.

In sharp contrast, the representatives of the SAC do not factorize in this way because (normally) there are no nontrivial ssusy-invariants $g(\tilde{T})$!

However, the s Lie-invariants $f(C)$ have counterparts in $H\left(s_{\text {susy }}\right)$ given by the representatives of $H\left(s_{\mathrm{gh}}\right)$.

- SAC is a cornerstone of the local BRST cohomology in any standard supersymmetric field theory, both for global and local SUSY and whether or not the algebra of the symmetry transformations closes off-shell
- SAC involves particularly useful variables for local BRST cohomology
- The differential

$$
s_{\mathrm{gh}}=-\frac{1}{2} M^{i j}\left(\Gamma^{a} C^{-1}\right)_{\underline{\alpha} \underline{\beta}} \xi_{i}^{\underline{\alpha}} \xi_{j}^{\frac{\beta}{j}} \frac{\partial}{\partial c^{a}}
$$

plays a distinguished part and has no counterpart in standard (nonsupersymmetric) Yang-Mills or gravity theories

- The representation of the translational generators P_{a} on the \tilde{T} differs substantially from usual partial or covariant derivatives as it corresponds to a representation of partial or covariant derivatives on-shell

Recent work on SAC:

FB, Supersymmetry algebra cohomology I: Definition and general structure, J. Math. Phys. 51 (2010) 122302 [arXiv:0911.2118]

FB, Supersymmetry algebra cohomology II: Primitive elements in 2 and 3 dimensions, J. Math. Phys. 51 (2010) 112303 [arXiv:1004.2978]

FB, Supersymmetry algebra cohomology III: Primitive elements in four and five dimensions, J. Math. Phys. 52 (2011) 052301 [arXiv:1005.2102]
M. Movshev, A. Schwarz, R. Xu, Homology of Lie algebra of supersymmetries, arXiv:1011.4731
M. Movshev, A. Schwarz, R. Xu, Homology of Lie algebra of supersymmetries and of super Poincare Lie algebra, Nucl. Phys. B 854 (2012) 483 [arXiv:1106.0335]

