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4 Local and trivial symmetries, Noethers theorems

4.1 Definition of infinitesimal local transformations and symmetries

Local symmetries, also called gauge symmetries10, are generated by transformations (gauge
transformations) containing functions which can depend arbitrarily on the coordinates xµ of
the base space. We shall denote such functions by the letter λ and infinitesimal gauge trans-
formations by δλφi,

δλφ
i = Riλ, Ri = ri([φ], x) + riµ([φ], x) ∂µ + . . .

=
∑

k

riµ1...µk([φ], x) ∂µ1 . . . ∂µk
. (4.1)

This means that gauge transformations may involve λ and its derivatives in addition to the
fields, their derivatives and the coordinates of the base space. For later purposes we have
written such transformations in terms of operators Ri which may depend on the fields and
their derivatives and on the base space coordinates. Analogously to our definition of infinite-
simal global symmetry transformations, δλφi represents the difference φ̃i(x) − φi(x) linearly
in λ, where φ̃i(x) is a finite gauge transformation taken at the same arguments xµ as φi(x).
Accordingly, δλ vanishes on all xµ and commutes with all ∂µ,

δλx
µ = 0, [δλ, ∂µ] = 0, (4.2)

and has the jet space representation

δλ = (Riλ)
∂

∂φi
+ ∂µ(Riλ)

∂

∂φi
,µ

+ . . . (4.3)

Finite gauge transformations arise from infinitesimal ones according to

φ̃i(x) =
(

exp(δλ)φi
)
(x). (4.4)

The definition of local symmetries of action functionals is analogous to the definition of global
symmetries.

Definition: δλ is called an infinitesimal local symmetry (gauge symmetry) of an action S[φ] =∫
dnxL([φ], x) if

δλL([φ], x) = ∂µK
µ([φ, λ], x) (4.5)

for some functions Kµ([φ, λ], x).

4.2 Example: spinor field coupled to electromagnetic field

In sections 3.4.2 and 3.4.3 we have constructed Poincaré invariant actions S[A] and S[ψ] for
vector fields Aµ and spinor fields ψ, respectively. S[A] describes, in particular, free electro-
magnetic fields (Aµ are the electromagnetic potentials; the Euler-Lagrange equations deriving
from S[A] are the inhomogeneous Maxwell equations in the vacuum). S[ψ] describes a free
spinor spinor field (such as the free electron field; the Euler-Lagrange equations deriving from
S[ψ] are the Dirac equations). Electromagnetic interactions of a spinor field (e.g. electron field)

10We shall use the terms local symmetry and gauge symmetry synonymously. The terminology used in the
literature varies, however. Some authors reserve the term gauge symmetry for particular local symmetries of
the Yang-Mills type.
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are described by a gauge invariant action S[A,ψ] =
∫
dnxL([A,ψ]) that contains S[A] + S[ψ]

and an additional interaction term:

L([A,ψ]) = −1
4
FµνF

µν + i ψ̄ΓµDµψ + imψ̄ψ, (4.6)

Fµν = ∂µAν − ∂νAµ (electromagnetic field strengths), (4.7)
Dµψ = ∂µψ − ieAµψ (covariant derivatives of ψ). (4.8)

Here m and e denote the mass and electric charge of the particles associated to ψ (e.g. mass
and electric charge of the electron). The action is invariant under the infinitesimal gauge
transformations

δλAµ = ∂µλ, δλψ = ieλψ, δλψ̄ = −ieλψ̄, (4.9)

where λ(x) is an arbitrary real function (δλψ̄ = −ieλψ̄ follows from δλψ = ieλψ according to
δλψ̄ = (δλψ)†Γ0 = (ieλψ)†Γ0 = −ieλψ̄). This implies the following gauge transformations of
Fµν and Dµψ:

δλFµν = ∂µ(δλAν)− ∂ν(δλAµ) = ∂µ∂νλ− ∂ν∂µλ = 0 (4.10)
δλDµψ = ∂µ(δλψ)− ie(δλAµ)ψ − ieAµ(δλψ)

= ∂µ(ieλψ)− ie(∂µλ)ψ − ieAµ(ieλψ)
= ie(∂µλ)ψ + ieλ∂µψ − ie(∂µλ)ψ − ieAµ(ieλψ)
= ieλ∂µψ − ieAµ(ieλψ)
= ieλ(∂µψ − ieAµψ) = ieλDµψ. (4.11)

Notice that Dµψ transforms in the same way as ψ simply by multiplication with ieλ whereas
∂µψ transforms according to δλ∂µψ = ie(∂µλ)ψ + ieλ∂µψ. The term ie(∂µλ)ψ drops out in
Dµψ because it is compensated for by the term −ie(δλAµ)ψ. Hence, the term −ieAµψ in Dµψ
arranges for δλDµψ not to contain a derivative of λ and thus to transform in a simple way. It
is now straightforward to verify the gauge invariance of the Lagrangian:

δλ(FµνF
µν) = 0 (4.12)

δλ(ψ̄ΓµDµψ) = (δλψ̄)ΓµDµψ + ψ̄ΓµδλDµψ = (−ieλψ̄)ΓµDµψ + ψ̄Γµ(ieλDµψ) = 0 (4.13)
δλ(ψ̄ψ) = (δλψ̄)ψ + ψ̄(δλψ) = (−ieλψ̄)ψ + ψ̄(ieλψ) = 0 (4.14)
⇒ δλL([A,ψ]) = 0. (4.15)

4.3 Comments

• The example in section 4.2 illustrates typical features of many gauge theories. The elec-
tromagnetic potentials Aµ are examples of so-called ‘gauge fields’. Gauge fields typically
contain in their gauge transformations terms with derivatives of functions λ and enable
one to construct covariant derivatives such as Dµψ in the above example. Covariant de-
rivatives of fields extend partial derivatives and have simpler gauge transformations than
the latter; typically these gauge transformations do not contain derivatives of the functions
λ as in the above example (cf. (4.11)), or they contain derivatives of these functions only
in a particular way. The electromagnetic field strengths Fµν are (rather simple) examples
of ‘field strengths’ or ‘curvature fields’ constructed out of gauge fields. The latter are also
characterized by simple gauge transformations (in the electromagnetic case one even has
δλFµν = 0, cf. (4.10)). Usually they are related to the covariant derivatives because they
occur in the commutators of covariant derivatives, and they often have a geometric mea-
ning or interpretation (a famous example is the Riemann tensor which describes geometric
properties of Riemannian manifolds and plays a central role in general relativity).
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• The requirement of gauge invariance controls and restricts, in particular, the interactions
of fields. These interactions are represented in the Lagrangian by terms of third or higher
order in the fields. E.g., the only interaction terms in (4.6) are eψ̄ΓµAµψ which describe
the coupling of the spinor field to the electromagnetic field. Gauge invariance rules out
many interaction terms that would be permitted by Poincaré symmetry alone, such as
AµA

µAνA
ν in the above example.

4.4 Useful mathematical concepts and results

4.4.1 Equivalence of functions and functionals

It is often useful, especially in the context of symmetries, to call two functions f([φ], x) and
g([φ], x) equivalent (with equivalence denoted by ') if they differ by a total divergence:

f([φ], x) ' g([φ], x) :⇔ ∃ kµ([φ], x) : f([φ], x)− g([φ], x) = ∂µk
µ([φ], x). (4.16)

In particular f([φ], x) ' 0 means f([φ], x) = ∂µk
µ([φ], x). Functionals

∫
dnx f([φ], x) and∫

dnx g([φ], x) are called equivalent if f([φ], x) ' g([φ], x).

4.4.2 ‘Variational formula’

Let δφi denote any variation or transformation of the fields which is ‘prolongated’ to derivatives
of the fields according to [∂µ, δ] = 0, δxµ = 0, and which is a derivation on functions of the
φi, φi

,µ, φ
i
,µν , . . . , x

µ. This means δφi
,µ = ∂µδφ, δφi

,µν = ∂ν∂µδφ
i, . . . , and

δ = (δφi)
∂

∂φi
+ (∂µδφ

i)
∂

∂φi
,µ

+ (∂ν∂µδφ
i)

∂S

∂φi
,µν

+ . . . (4.17)

(see section 2.6 for the definition of
∂S

∂φi
,µν

). These δ fulfill the ‘variational formula’

∀f([φ], x) : δf([φ], x) ' (δφi)
δf([φ], x)

δφi
(4.18)

with ' as defined in (4.16). (4.18) holds because of

δf = (δφi)
∂f

∂φi
+ (∂µδφ

i)
∂f

∂φi
,µ

+ . . .

= (δφi)
∂f

∂φi
+ ∂µ

(
(δφi)

∂f

∂φi
,µ

)
− (δφi) ∂µ

∂f

∂φi
,µ

+ . . .

= (δφi)
δf

δφi
+ ∂µ

(
(δφi)

∂f

∂φi
,µ

+ . . .
)
.

4.4.3 Adjoint operator

Let P be an operator defined on functions f = f([φ], x) according to

∀f : Pf =
∑
k≥0

pµ1...µk∂µ1 . . . ∂µk
f = pf + pµ∂µf + . . . (4.19)
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with some coefficient functions pµ1...µk = pµ1...µk([φ], x). We define an operator P † and call it
the operator adjoint to P according to:

∀f : P †f :=
∑
k≥0

(−)k∂µ1 . . . ∂µk
(f pµ1...µk) = pf − ∂µ(f pµ) + . . . (4.20)

This definition implies, with ' as in (4.16),

∀f, g : f (Pg) ' (P †f) g (4.21)

which motivates the notation P †. (4.21) holds because of

f (Pg) = f(pg + pµ∂µg + . . . ) = fpg + ∂µ(fpµg)− ∂µ(fpµ)g + . . .

= (P †f)g + ∂µ(fpµg + . . . ) ' (P †f)g.

4.4.4 Algebraic Poincaré lemma

a) A function f([φ], x) has vanishing Euler-Lagrange derivatives w.r.t. all fields φi if and only
if f([φ], x) is a total divergence,

δ

δφi
f([φ], x) = 0 ∀φi ⇔ ∃Jµ([φ], x) : f([φ], x) = ∂µJ

µ([φ], x). (4.22)

b) Consider a set of functions Jµ1...µk([φ], x) related by the permutation symmetry

Jµ1...µi...µj ...µk = −Jµ1...µj ...µi...µk ∀i, j (i 6= j). (4.23)

One has in n dimensions:

0 < k < n : ∂µk
Jµ1...µk = 0 ⇔ ∃Jµ1...µk+1 : Jµ1...µk = ∂µk+1

Jµ1...µk+1 , (4.24)

where the functions Jµ1...µk+1 fulfill (4.23) too (with k + 1 in place of k).

c) A function f([φ], x) which is annihilated by all ∂µ is a constant function (i.e., it does not
depend on the fields, their derivatives or the xµ at all):

∂µf([φ], x) = 0 ∀µ ⇔ f([φ], x) = constant. (4.25)

Comment: These results can be expressed more compactly in terms of differential forms ωp

and the exterior derivative operator d defined according to

ωp =
1

p!(n− p)!
dxµ1 . . . dxµpεµ1...µnJ

µp+1...µn ,

d = dxµ∂µ, dxµdxν = −dxνdxµ ∀µ, ν.

Then they read

p = n : ∃ωn−1 : ωn = dωn−1 ⇔ δωn

δφi
= 0 ∀φi

0 < p < n : dωp = 0 ⇔ ∃ωp−1 : ωp = dωp−1

p = 0 : dω0 = 0 ⇔ ω0 = constant.

The case p = n is equivalent to (4.22) (with ωn = (−)n−1dnxf), the cases 0 < p < n are
equivalent to (4.24) for k = n − p (with ωp as above and ωp−1 = (−)n−1((p − 1)!(n − p +
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1)!)−1dxµ1 . . . dxµp−1εµ1...µnJ
µp...µn), and the case p = 0 is equivalent to (4.25) (with ω0 = f).

These results are reminiscent of the so-called Poincaré lemma for ordinary differential forms
(p!)−1dxµ1 . . . dxµpωµ1...µp(x) and are sometimes referred to as the ‘algebraic Poincaré lemma’
(for differential forms on jet spaces). They contain the ordinary Poincaré lemma as a special
case when the differential forms do not depend on the fields at all.11

4.4.5 Fermionic and bosonic fields, Grassmann parity and grading

In view of quantum theory it is useful to distinguish between ‘bosonic’ and ‘fermionic’ fields
already in classical field theory. Two Fermionic fields anticommmute, two bosonic fields com-
mute, a fermionic field and a bosonic field commute. Examples of fermionic fields are spinor
fields, examples of bosonic fields are scalar and vector fields (where spinor, scalar and vector
refers to the transformation under Lorentz transformations). To describe the commutation
relations we assign a ‘grading’ (‘Grassmann parity’) σ(φi) to each field which is either 0 (for
bosonic fields) or 1 (for fermionic fields),

σ(φi) ∈ {0, 1}. (4.26)

The grading determines the commutation relations of the fields according to

φiφj = (−)σ(φi)σ(φj)φjφi. (4.27)

This implies φiφjφk = (−)σ(φi)σ(φj)φjφiφk = (−)σ(φi)σ(φj)(−)σ(φi)σ(φk)φjφkφi =
(−)σ(φi)(σ(φj)+σ(φk))φjφkφi, i.e., σ(φjφk) = σ(φj) + σ(φk). Extending this to products of ar-
bitrarily many fields, one concludes that the grading is additive (modulo 2) for products of
fields,

σ(φi1φi2 · · ·φir) = σ(φi1) + σ(φi2) + · · ·+ σ(φir) (mod 2). (4.28)

Consistency requries that, e.g.,

∂

∂φ1
(φ1φ2) != (−)σ(φ1)σ(φ2) ∂

∂φ1
(φ2φ1).

This imposes that the derivative w.r.t. a field has the same grading as the field itself:

σ(
∂

∂φi
) = σ(φi), i.e., ∀f :

∂

∂φi
(φjf) = δj

i f + (−)σ(φi)σ(φj)φj ∂

∂φi
f. (4.29)

The base space coordinates are even graded and so are the derivatives ∂µ,

σ(xµ) = σ(∂µ) = 0. (4.30)

Global or local symmetry transformations do not alter the grading, i.e. they are even graded

σ(δε) = 0, σ(δλ) = 0. (4.31)

This reflects that finite transformations exp(δε)φ or exp(δλ)φ should not alter the grading of
a field φ.

Furthermore we impose that Lagrangians are bosonic (i.e., each monomial in a Lagrangian
contains an even number of fermionic fields),

σ(L([φ], x)) = 0. (4.32)
11We have disregarded here possible global obstructions to the existence of differential forms, i.e., in general

the results hold only locally. Proofs of the algebraic Poincaré lemma can be found e.g. in Ref. [3], or in section
4 of G. Barnich et al, Phys. Rept. 338 (2000) 439 [hep-th/0002245] and in references mentioned there.
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4.5 Noether identities and Noethers second theorem

Using the terminology introduced above, Noethers second theorem can be formulated as follows:

δλφ
i = Riλ generates a local symmetry of an action S[φ] =

∫
dnxL([φ], x) if and only if the

Euler-Lagrange derivatives of L fulfill the identity

(−)σ(φi)Ri† δL

δφi
= 0 (4.33)

where σ(φi) denotes the grading of φi (see section 4.4.5).

Proof:
‘⇒’: We assume that δλ is a local symmetry of S =

∫
dnxL, i.e., δλL = ∂µK

µ for all functions
λ(x). This implies (4.33) by applying the Euler-Lagrange derivative w.r.t. λ to the equation
δλL = ∂µK

µ:

δλL = ∂µK
µ ⇒ δ

δλ

(
δλL

)
=

δ

δλ

(
∂µK

µ
)

⇒ (−)σ(φi)Ri† δL

δφi
= 0.

Since it might not be evident how the factor (−)σ(φi) arises, we shall now comment in some
more detail on this derivation. Applying the variational formula (4.18) to δλL = ∂µK

µ, one
obtains (δλφi) δL

δφi ' 0 (with equivalence ' as in (4.16)). This implies

0 ' (δλφi)
δL

δφi
= (−)σ(φi)σ(φi) δL

δφi
(δλφi) = (−)σ(φi) δL

δφi
(δλφi)

= (−)σ(φi) δL

δφi
(Riλ) ' (−)σ(φi)

(
Ri† δL

δφi

)
λ. (4.34)

Here we used that σ( δL
δφi ) = σ(φi) and σ(δλφi) = σ(φi), as follows from equations (4.29)–(4.32).

Furthermore we used that (σ(φi))2 = σ(φi) (this holds owing to σ(φi) ∈ {0, 1}) and applied
equation (4.21). The Euler Lagrange derivative of (4.34) w.r.t. λ yields (4.33) because of (4.22)
(since λ is an arbitrary function, it plays the same role as the fields in (4.22)).

‘⇐’: We multiply (4.33) from the right by λ, then use (4.34) reading the latter from the right
to the left, and finally use the variational formula (4.18) to conclude δλL ' 0 which shows that
δλ is a local symmetry of S =

∫
dnxL.

Example:
Let us consider again the example in section 4.2. In this case it is convenient to choose the set
of fields {φi} = {Aµ, ψ

α, ψ̄α} (for complex fields one may take the real and imaginary parts as
independent fields, or any linearly independent (complex) linear combinations thereof; hence,
in the case of a spinor field one may take the components of ψ and ψ̄ as a set of fields). Since
spinor fields ψ are fermionic, the Noether identities (4.33) deriving from (4.9) read

−∂µ
δL

δAµ
− δL

δψα
(ieψα)− δL

δψ̄α
(−ieψ̄α) = 0. (4.35)

Let us verify this identity explicitly. One has

δL

δAµ
= ∂νF

νµ + eψ̄Γµψ (4.36)

δL

δψα
= i(∂µψ̄Γµ)α − e(ψ̄Γµ)αAµ − imψ̄α (4.37)

δL

δψ̄α
= i(Γµ∂µψ)α + eAµ(Γµψ)α + imψα (4.38)
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This gives

− ∂µ
δL

δAµ
= −e∂µ(ψ̄Γµψ)

− δL

δψα
(ieψα) = e(∂µψ̄)Γµψ + ie2ψ̄ΓµψAµ − emψ̄ψ

− δL

δψ̄α
(−ieψ̄α) = eψ̄Γµ∂µψ − ie2Aµψ̄Γµψ + emψ̄ψ

where we used ∂µ∂νF
νµ = 0 (this follows from F νµ = −Fµν and ∂µ∂ν = ∂ν∂µ) and the fact

that ψ and ψ̄ are fermionic. (4.35) is now obvious.

4.6 Trivial local symmetries

Example
Consider the transformations

δλφ
i = λmji([φ], x)

δL

δφj
, mji([φ], x) = −mij([φ], x) (4.39)

where L is a Lagrangian involving at least two different fields (i = 1, . . . , N with N > 1), and
all the fields are bosonic. The transformations (4.39) generate a local symmetry of S =

∫
dnxL

according to our definition because of

δλL ' (δλφi)
δL

δφi
= λmji([φ], x)

δL

δφj

δL

δφi
= 0

where we used the variational formula (4.18), and the last equality (= 0) holds because of
the antisymmetry of mji. Notice that this argument applies to every Lagrangian with bosonic
fields and every set of functions mji([φ], x) with mji = −mij .

General case
Consider the following transformations

δλφ
i =

∑
k,m≥0

(−)k∂µ1 . . . ∂µk

(
M j(ν1...νm)i(µ1...µk)([φ, λ], x)∂ν1 . . . ∂νm

δL

δφj

)
, (4.40)

where

M j(ν1...νm)i(µ1...µk)([φ, λ], x) = −(−)σ(φi)σ(φj)M i(µ1...µk)j(ν1...νm)([φ, λ], x). (4.41)

Transformations (4.40) are not restricted to Lagrangians containing only bosonic fields and
exist even when the Lagrangian contains only one field (see exercise 15). (4.41) implies that
all transformations (4.40) generate gauge symmetries according to our definition,

δλL ' (δλφi)
δL

δφi

'
∑
k,m

M j(ν1...νm)i(µ1...µk)([φ, λ], x)
(
∂ν1 . . . ∂νm

δL

δφj

)(
∂µ1 . . . ∂µk

δL

δφi

)
= 0.

Since the functions M j(ν1...νm)i(µ1...µk) are completely arbitrary except for the permutation
properties (4.41), every action has infinitely many local symmetries of this type. For obvious
reasons, these gauge symmetries are called trivial gauge symmetries. Notice in particular that
the gauge transformations of these symmetries vanish weakly (δλφi ≈ 0 with weak equality ≈
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as in section 2.2)12. Accordingly, the operators Ri and Ri† of trivial gauge symmetries vanish
weakly too.

A sufficient criterion for a symmetry to be nontrivial is thus that the gauge transformations
or, equivalently, the operators Ri do not all vanish weakly.

4.7 Trivial and equivalent global symmetries

In section 4.6 it was shown that every action has infinitely many local symmetries because of
the presence of trivial local symmetries. A local symmetry δλ involves an arbitrary function
which we denoted generically by λ. Since δλ is a symmetry for every choice of λ(x), it is
also symmetry when we replace λ(x) by some function f([φ], x)ε. In this manner δλ induces
a global symmetry of the action generated by the transformations δεφi = Qi([φ], x)ε with
Qi = Rif([φ], x), where the Ri are the operators associated with δλ (cf. (4.1)). Since f([φ], x)
is completely arbitrary (except that fε should have the same grading as λ) and since every
action has infinitely many local symmetries, every action has infinitely many global symmetries
too.

Global symmetries which arise in this manner from local symmetries are called trivial global
symmetries. Two global symmetries which differ only by a trivial global symmetry are called
equivalent. More precisely, two global symmetries are called equivalent if the respective func-
tions Qi([φ], x) differ only by Rif([φ], x) for some function f([φ], x) and a set of operators
Ri generating a local symmetry (whether or not that local symmetry is trivial). Denoting
this equivalence by ∼ and using Noethers second theorem (cf. section 4.5), we summarize this
definition as follows:

δε ∼ δ′ε′ :⇔ ∃f,Ri : Qi −Qi′ = Rif, (−)σ(φi)Ri† δL

δφi
= 0. (4.42)

4.8 Trivial and equivalent conservation laws

In section 2.2 we defined a conserved current as a set of functions Jµ([φ], x) satisfying
∂µJ

µ([φ], x) ≈ 0. If n > 1, ∂µJ
µ([φ], x) is trivially fulfilled if Jµ ≈ ∂νK

µν for some functi-
ons Kνµ([φ], x) with Kµν = −Kνµ because ∂µJ

µ ≈ ∂µ∂νK
µν = 0 (the latter holds because

of Kµν = −Kνµ and ∂µ∂ν = ∂ν∂µ). This motivates us to call a conserved current trivial if
Jµ ≈ ∂νK

νµ, and to call two currents equivalent (Jµ ∼ Jµ′) if they differ only by a trivial
current,

n > 1 : Jµ ∼ Jµ′ :⇔ ∃Kµν : Jµ − Jµ′ ≈ ∂νK
µν , Kνµ = −Kµν (4.43)

where we omitted the arguments [φ], x of the J ’s and K’s for notational convenience.

If n = 1, a conserved current is just a conserved function (a constant of motion) and the Kµν

are replaced by constant functions:

n = 1 : J ∼ J ′ :⇔ J − J ′ ≈ constant. (4.44)
12Under fairly general assumptions on the Lagrangian one can prove that a gauge symmetry whose gauge

transformations vanish weakly necessarily takes the form (4.40), see e.g. appendix 6.A of G. Barnich et al, Phys.
Rept. 338 (2000) 439 [hep-th/0002245].
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4.9 Noethers first theorem (extended version)

We have already mentioned in sections 1.8 and 2.4 that a bijective correspondence of glo-
bal symmetries and conserved currents (resp. constants of motion, if n = 1) only holds for
equivalence classes of global symmetries and conserved currents. The respective equivalences
are those described in sections 4.7 and 4.8. Armed with these definitions of equivalent global
symmetries and conserved currents, one can prove under fairly general assumptions13:

The equivalence classes of global symmetries and the equivalence classes of conserved currents
(if n > 1), resp. the equivalence classes of constants of motion (if n = 1) correspond one-to-one.
That is, for each equivalence class of global symmetries there is exactly one equivalence class
of conserved currents (if n > 1), resp. of constants of motion (if n = 1). In particular, trivial
global symmetries correspond to trivial conserved currents (if n > 1), resp. to trivial constants
of motion (if n = 1).

We cannot provide here the complete proof of this theorem as this would require additional
mathematical tools and results. However we can prove at least part of it. Namely the theorem
as stated above includes the result that conserved currents arising from gauge symmetries
through λ = f([φ], x)ε (with σ(λ) = σ(fε)) are always trivial in the sense of section 4.8. Let
us denote a transformation of this type by δf ,

δfφ
i = Rif([φ], x)ε. (4.45)

Since δλ is a gauge symmetry (by assumption), we have δfL = ∂µK
µ
f for some Kµ

f . Using the
variational formula (4.18), we conclude

(δfφi)
δL

δφi
= ∂µJ

µ
f (4.46)

for some Jµ
f . Hence, Jµ

f is a conserved current (according to (4.46) one has ∂µJ
µ
f ≈ 0). To show

that this current is trivial, we multiply the Noether identity (4.33) from the right by fε,

(−)σ(φi)
(
Ri† δL

δφi

)
fε = 0. (4.47)

Applying now (4.21) and using σ(λ) = σ(fε) we obtain

0 = (−)σ(φi) δL

δφi
Rifε− ∂µ

(
Siµ

f

δL

δφi

)
= (Rifε)

δL

δφi
− ∂µ

(
Siµ

f

δL

δφi

)
(4.48)

where Siµ
f is an operator which acts on δL

δφi and arises when applying (4.21). Explicitly one has

(−)σ(φi)
(
Ri† δL

δφi

)
fε− (−)σ(φi) δL

δφi
Rifε = −∂µ

(
(−)σ(φi) δL

δφi
riµfε+ . . .

)
= −∂µ

(
riµfε

δL

δφi
+ . . .︸ ︷︷ ︸

Siµ
f

)

where riµ([φ], x) are the functions occurring in (4.1) and the ellipses denote possible further
terms containing functions riµ1...µk([φ], x) from (4.1) with k > 1 (such terms are present only
when the gauge transformations δλφi contain second or higher order derivatives of λ). (4.48)
gives

(δfφi)
δL

δφi
= ∂µ

(
Siµ

f

δL

δφi

)
. (4.49)

13G. Barnich et al, Commun. Math. Phys. 174 (1995) 57 [hep-th/9405109].
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Equations (4.46) and (4.49) yield

∂µ

(
Jµ

f − Siµ
f

δL

δφi

)
= 0. (4.50)

Using now (4.24) for k = 1 we conclude from (4.50)

Jµ
f − Siµ

f

δL

δφi
= ∂νK

µν , Kµν = −Kνµ (4.51)

for some functions Kµν([φ], x). This shows that the current in (4.46) indeed is trivial, for any
choice of the function f :

Jµ
f ≈ ∂νK

µν , Kµν = −Kνµ. (4.52)

4.10 Basis and algebra of global symmetries

We call a set {δA} of transformations a basis of the infinitesimal global symmetries of an
action S =

∫
dnxL if every global symmetry transformation δε can be written as a linear

combination εkAδA of the δA (with constant coefficients kA) up to a trivial global symmetry
(completeness of the basis), and if no nonvanishing linear combination of the δA is a trivial
global symmetry (independence of the elements of the basis). Notice that δA denotes the
symmetry transformations without parameters εA. Using the notation δAφ

i = Qi
A([φ], x), a

basis δA can be characterized as follows:

Qi([φ], x)
δL

δφi
' 0 ⇔ Qi([φ], x) ∼ kAQi

A([φ], x), kA = constant, (4.53)

kAQi
A([φ], x) ∼ 0 ⇔ kA = 0 ∀A. (4.54)

In (4.54) we used that δεL = ∂µK
µ with δεφ

i = εQi is equivalent to Qi δL
δφi ' 0 by the

variational formula (4.18). We note that εAδA are bosonic transformations according to (4.31).
Nevertheless δA can be a fermionic transformation (then εA is a fermionic parameter).

The commutator of two global symmetry transformations is again a global symmetry trans-
formation. This follows on the hand from δεL ' 0 ⇒ δ′ε′δεL ' 0 (which is an immediate
consequence of [δ′ε′ , ∂µ] = 0) and on the other hand from the fact the commutator of two
derivations is again a derivation (this follows from the definition of derivations). For a basis δA
this means that the graded commutator of two elements of the basis (commutator or anticom-
mutator, depending on the grading of these elements) is equivalent to a linear combination of
the δA again,

[δA, δB} ∼ fAB
CδC (4.55)

[δA, δB} := δAδB − (−)σ(δA)σ(δB)δBδA (4.56)

where fAB
C are constant coefficients. According to (4.55), the graded commutators of the δA

form a graded Lie algebra modulo trivial global symmetry transformations.

4.11 Exercises 14 and 15

Exercise 14: Relativistic point particle
The Lagrangian for a relativistic point particle that is invariant under arbitrary (regular)
reparametrizations t 7→ t̃(t) of the world line xµ(t) is

L([x]) =
√
ẋµẋνηµν =

√
ẋµẋµ.
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a) Verify that δλ with δλx
µ = λ ẋµ is a local symmetry of the action S[x] =

∫
dtL([x]) by

showing that, for an arbitrary function λ(t):

δλL =
d

dt

(
λL

)
b) Determine and verify explicitly the corresponding Noether identity.

c) Verify that the ‘Noether charge’ J = λL− (δλxµ)
∂L

∂ẋµ
vanishes identically.

Attention: Here t is the parameter of the world line xµ(t) and must not be confused with x0.

Exercise 15: A trivial local symmetry
Consider the following 1-dimensional example (n = 1) with only one dynamical variable x:

L([x]) =
m

2
ẋ2, δλ x = 2λ

...
x +λ̇ẍ

Verify that δλ is a local symmetry of S[x] =
∫
dtL([x]) and that it is trivial according to the

terminology introduced above.

Solution of exercise 14
a) One has δλẋµ = d

dt(λ ẋ
µ) = λ̇ ẋµ + λ ẍµ. This gives

δλL =
ẋµ(δλẋµ)√

ẋν ẋν
=
ẋµ(λ̇ ẋµ + λ ẍµ)√

ẋν ẋν
=
λ̇ ẋµẋ

µ + λ ẋµẍ
µ

√
ẋν ẋν

= λ̇
√
ẋµẋµ + λ

d

dt

√
ẋµẋµ =

d

dt

(
λ
√
ẋµẋµ

)
=

d

dt

(
λL

)
b) Noether identity:

δL

δxµ
ẋµ = 0.

To verify this identity explicitly we first calculate δL
δxµ :

δL

δxµ
= − d

dt

∂L

∂ẋµ
= − d

dt

ẋµ√
ẋν ẋν

= − ẍµ√
ẋν ẋν

+
ẍν ẋν

(ẋ%ẋ%)3/2
ẋµ .

This gives:
δL

δxµ
ẋµ = − ẍµ√

ẋν ẋν
ẋµ +

ẍν ẋν

(ẋ%ẋ%)3/2
ẋµẋ

µ = − ẍµẋ
µ

√
ẋν ẋν

+
ẍν ẋν

(ẋ%ẋ%)1/2
= 0.

c) J = λL− (δλxµ)
∂L

∂ẋµ
= λ

√
ẋµẋµ − λ ẋµ ẋµ√

ẋν ẋν
= λ

√
ẋµẋµ − λ

ẋµẋµ√
ẋν ẋν

= 0.

Solution of exercise 15
δλ is a local symmetry because of δλ L = m

d

dt

(
λ̇ẋẍ+ 2λẋ

...
x −λẍ2

)
.

It is trivial because of δλ x = −2λ
d

dt

δL

δx
− λ̇

δL

δx
= − d

dt

(
λ
δL

δx

)
+ (−λ)

d

dt

δL

δx
.


