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3 Poincaré symmetry

3.1 Lorentz transformations

3.1.1 Lorentz transformations of the spacetime coordinates

Lorentz transformations of spacetime coordinates are denoted by

x̃µ = Λµ
ν x

ν .

Examples in four dimensions with (x0, x1, x2, x3) = (t, x, y, z):
Boost in x-direction:

ct̃
x̃
ỹ
z̃

 =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



ct
x
y
z

 , β =
v

c
, γ =

1√
1− β2

(3.1)

Rotation around z-axis:
ct̃
x̃
ỹ
z̃

 =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1




ct
x
y
z

 (3.2)

The defining property of Lorentz transformations is that they leave invariant the Minkowski
metric ηµν :

ηµν = Λµ
%Λν

ση
%σ. (3.3)

We use the ‘mostly plus’ convention for the Minkowski metric (in all dimensions):

ηµν =


−1 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1

 (3.4)

Infinitesimal transformations (Λ = exp(−ε)):

Λµ
ν = δµ

ν − εµν +O(ε2)

(3.3) ⇒ ηµν = (δµ
% − εµ%)(δν

σ − ενσ)η%σ +O(ε2)

= ηµν − εµ%η
%ν − ενση

µσ +O(ε2) (3.5)

(3.5) imposes
εµν + ενµ = 0 where εµν := εµ%η

%ν

Hence, the parameters εµν of Lorentz transformations are antisymmetric when written with
two upper (or lower) indices,

εµν = −ενµ ⇒ ε0i = εi0 , εij = −εj i . (3.6)

(3.1) is recovered by choosing εµν such that only ε01 and ε10 are different from zero:

ε01 = ε10 = a, εµν = 0 elsewise ⇒ Λ = exp(−ε) =


cosh a − sinh a 0 0

− sinh a cosh a 0 0
0 0 1 0
0 0 0 1


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Comparing this to (3.1) we find that tanh a = v/c, i.e. a = artanh(v/c).

(3.2) is recovered by choosing εµν such that only ε12 and ε21 are different from zero:

ε21 = −ε12 = α, εµν = 0 elsewise ⇒ Λ = exp(−ε) =


1 0 0 0
0 cosα sinα 0
0 − sinα cosα 0
0 0 0 1


In the following we shall use units such that c = 1.

3.1.2 Lorentz transformations of fields

Scalar fields

Let us begin with the simplest case, a real scalar field ϕ(x). It transforms according to

ϕ̃(x̃) = ϕ(x), x̃µ = Λµ
νx

ν . (3.7)

To derive the infinitesimal transformations δεϕ we use Λµ
ν = δµ

ν − εµν + O(ε2) which gives
x̃µ = xµ − εµνx

ν +O(ε2). The Taylor expansion of ϕ̃(x̃) gives to first order in ε

ϕ̃(x̃) = ϕ̃(xµ − εµνx
ν +O(ε2)) = ϕ̃(x)− εµνx

ν∂µϕ(x) +O(ε2).

Inserting this into (3.7), we obtain for δεϕ(x) (i.e., for ϕ̃(x)− ϕ(x) linear in ε):

δεϕ = εµνx
ν∂µϕ . (3.8)

Contravariant vector fields

A contravariant vector field A%(x) transforms according to

Ã%(x̃) = Λ%
σA

σ(x), x̃µ = Λµ
νx

ν . (3.9)

We Taylor expand Ãρ(x̃) in ε as we expanded before a scalar field. Using Λ%
σ = δσ

σ−ε%σ+O(ε2),
the expansion of Λ%

νA
ν(x) in (3.9) reads

Λ%
σA

σ(x) = A%(x)− ε%σA
σ(x) +O(ε2).

This gives the infinitesimal transformations

δεA
% = εµνx

ν∂µA
% − ε%σA

σ. (3.10)

Covariant vector fields

A covariant vector field A%(x) transforms according to

Ã%(x̃) = Aσ(x)(Λ−1)σ
% , x̃µ = Λµ

νx
ν (3.11)

where (Λ−1)ν
% = (exp(ε))ν

% = δν
% + εν% + O(ε2) is the matrix inverse of Λµ

% = (exp(−ε))µ
%.

Proceeding as in the case of the contravariant vector field, we obtain

δεA% = εµνx
ν∂µA% +Aσε

σ
% . (3.12)
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Tensor fields

A tensor field Tµ1...µr
ν1...νs of type (r, s) carries r upper and s lower indices. Its finite transformations

are

T̃µ1...µr
ν1...νs

(x̃) = Λµ1
%1 · · ·Λµr

%rT
%1...%r
σ1...σs

(x)(Λ−1)σ1
ν1 · · · (Λ−1)σs

νs , x̃µ = Λµ
νx

ν (3.13)

The corresponding infinitesimal transformations are

δεT
µ1...µr
ν1...νs

= ε%σx
σ∂%T

µ1...µr
ν1...νs

−
r∑

i=1

εµi
%T

µ1...µi−1%µi+1...µr
ν1...νs +

s∑
i=1

Tµ1...µr
ν1...νi−1%νi+1...νs

ε%νi . (3.14)

General fields

In general, fields φi forming a linear representation of the Lorentz group transform according
to

φ̃i(x̃) = exp(− 1
2ε

µνSµν)i
jφ

j(x), x̃µ = Λµ
νx

ν , (3.15)

where the Sµν are contant matrices which represent the Lorentz algebra5:

Sµν = −Sνµ, [Sµν , S%σ] = ην%Sµσ − ηµ%Sνσ − ηνσSµ% + ηµσSν% . (3.16)

The corresponding infinitesimal transformations are

δεφ
i = εµνx

ν∂µφ
i − 1

2 ε
µνSµν

i
jφ

j . (3.17)

Comments: Scalar fields fulfill (3.15) and (3.17) with Sµν = 0. The representation matrices
Sµν of the Lorentz algebra arising from (3.10) are subject of exercise 11b. The representation
matrices arising from (3.12) are obtained analogously but one has to be careful with regard
to indices6. The representation matrices Sµν arising from (3.14) can be obtained by ordering
the components of Tµ1...µr

ν1...νs in some way (e.g., for n = 2 and (r, s) = (2, 0) one may choose
(T 00, T 01, T 10, T 11) ≡ (φ1, φ2, φ3, φ4)). Spinor fields will be discussed next.

Spinor fields

Spinor fields transform under the Lorentz group according to the spin representation of the
Lorentz algebra (3.31). This representation can be constructed by means of a set of matrices
Γµ, µ = 0, . . . , n − 1. For n = 2k and n = 2k + 1, these are 2k × 2k matrices with complex
entries which fulfill the Dirac algebra

{Γµ,Γν} = 2ηµν1 (3.18)

where { , } denotes the anticommutator ({M,N} := MN +NM), and 1 is the 2k × 2k unit
matrix. More explicitly, (3.18) reads

Γ0Γ0 = −1, ΓiΓi = 1 (no sum over i here), µ 6= ν : ΓµΓν = −ΓνΓµ . (3.19)

In four dimensions, a set of matrices fulfilling (3.18) is

Γ0 = i
(
0 1
1 0

)
, Γi = i

(
0 −σi

σi 0

)
(3.20)

5We are using matrix notion. Sµν
i
j are the entries of the matrix Sµν (i and j label the rows and columns,

respectively). SµνS%σ denotes the matrix product of Sµν and S%σ, i.e. (SµνS%σ)i
j = Sµν

i
kS%σ

k
j .

6To match (3.12) with (3.17), one has to make the index identifications % ≡ i and σ ≡ j.
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where the 0 and 1 denote the 2 × 2 zero and unit matrix respectively, and σ1, σ2, σ3 are the
Pauli matrices

σ1 =
(

0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.21)

A direct consequence of (3.18) is that the matrices

Σµν := 1
4 [Γµ,Γν ] (3.22)

form a representation of the Lorentz algebra. To verify this we proceed as follows:

[ΓµΓν ,Γ%] = ΓµΓνΓ% − Γ%ΓµΓν

= Γµ({Γν ,Γ%} − Γ%Γν)− ({Γ%,Γµ} − ΓµΓ%)Γν

= 2ην%Γµ − 2η%µΓν (3.23)

⇒ [Σµν ,Γ%] = 1
4 [ΓµΓν ,Γ%]− (µ↔ ν)

(3.23)
= ην%Γµ − ηµ%Γν (3.24)

⇒ [Σµν ,Γ%Γσ] = [Σµν ,Γ%]Γσ + Γ%[Σµν ,Γσ]
(3.24)
= ην%ΓµΓσ − ηµ%ΓνΓσ + ηνσΓ%Γµ − ηµσΓ%Γν (3.25)

⇒ [Σµν ,Σ%σ]
(3.25)
= ην%Σµσ − ηµ%Σνσ + ηνσΣ%µ − ηµσΣ%ν . (3.26)

In n = 2k and n = 2k+ 1 dimensions the Σµν are 2k× 2k matrices and therefore act on spinor
fields ψ(x) with 2k components (ψα, α = 1, . . . , 2k). Lorentz transformations of spinor fields
are generated according to (3.15) and (3.17), with representation matrices Sµν given by Σµν .
Using matrix notation, with ψ a ‘column spinor’ on which Σµν acts, we obtain:

ψ̃(x̃) = exp(− 1
2ε

µνΣµν)ψ(x), (3.27)

δεψ = εµνx
ν∂µψ − 1

2 ε
µνΣµνψ, ψ =

ψ
1

ψ2

...

 . (3.28)

Remarks: The set of matrices {Γµ} is by no means unique. Indeed, when {Γµ} is a set
of 2k × 2k matrices fulfilling (3.18), then {MΓµM

−1} also fulfills (3.18) for every invertible
2k× 2k matrix M . Hence, there is a huge freedom to choose Γ-matrices. One can show that, in
even dimension n = 2k, the 2k × 2k Γ-matrices are unique up to equivalence transformations
MΓµM

−1. Furthermore, one can always choose a set of unitary Γ-matrices. With no loss of
generality we will therefore assume in the following that all the Γ-matrices are unitary, i.e.,

∀µ : Γµ
† Γµ = 1, (3.29)

where Γµ
† = Γµ

∗> denotes the complex conjugated and transposed matrix Γµ.

3.2 Lorentz algebra

From (3.17) one reads off the infinitesimal Lorentz transformations Mµν corresponding to εµν :

δεφ
i = 1

2 ε
µνMµνφ

i, Mµνφ
i = (xν∂µ − xµ∂ν)φi︸ ︷︷ ︸

orbital part

−Sµν
i
jφ

j︸ ︷︷ ︸
spin part

. (3.30)

They generate boosts and spatial rotations (cf. section 3.1.1),

M0i : boost in xi direction, Mij : rotation in the xi-xj plane,
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and fulfill the Lorentz algrebra (cf. exercise 11a):

[Mµν ,M%σ] = ην%Mµσ − ηµ%Mνσ − ηνσMµ% + ηµσMν% . (3.31)

This gives

[M0i,M0j ] = Mij , (3.32)
[M0i,Mjk] = δijM0k − δikM0j , (3.33)
[Mij ,Mkl] = δilMjk − δikMjl − δjlMik + δjkMil . (3.34)

According to (3.32), the commutator of two infinitesimal boosts in two different directions is an
infinitesimal rotation in the plane spanned by these directions. Equation (3.33) shows that the
commutator of an infinitesimal boost in xj direction and an infinitesimal rotation in the xj-xk

plane is an infinitesimal boost in xk direction. Equation (3.34) is the commutator algebra of
infinitesimal spatial rotations. In four dimensional spacetime it is the familiar angular momen-
tum algebra of three dimensional space (using M12 = −L3 etc., (3.34) becomes [L1, L2] = L3

etc.).

3.3 Poincaré transformations and algebra

Poincaré transformations contain spacetime translations in addition to Lorentz transformati-
ons. Spacetime translations of the coordinates are given by x̃µ = xµ−εµ with constant εµ. The
corresponding transformations of fields are φ̃i(xµ − εµ) = φi(x). Hence infinitesimal Poincaré
transformations of fields read

δεφ
i = (εµ + εµνx

ν)∂µφ
i − 1

2 ε
µνSµν

i
jφ

j . (3.35)

Analogously to (3.30) we read off from (3.35) the infinitesimal Poincaré transformations cor-
responding to εµ and εµν , respectively:

δεφ
i = (εµPµ + 1

2 ε
µνMµν)φi, Pµφ

i = ∂µφ
i, Mµνφ

i = (xν∂µ − xµ∂ν)φi − Sµν
i
jφ

j . (3.36)

The commutators of these transformations fulfill the Poincaré algebra (cf. exercise 11a)

[Pµ, Pν ] = 0, (3.37)
[Mµν , P%] = η%νPµ − η%µPν , (3.38)

[Mµν ,M%σ] = ην%Mµσ − ηµ%Mνσ − ηνσMµ% + ηµσMν% . (3.39)

3.4 Poincaré invariant actions

The method to construct Poincaré invariant actions is to construct Lagrangians L that trans-
form scalarly under infinitesimal Poincaré transformations, i.e.

δεL = (εµ + εµνx
ν)∂µL = ∂µ(εµL+ εµνx

νL). (3.40)

The second equality holds owing to ∂µ(εµνx
ν) = εµµ = 0 (one has εµµ = εµνηνµ = 0 because

of εµν = −ενµ), and ensures that Poincaré transformations generate a symmetry of the action
S =

∫
dnxL.

Scalar Lagrangians are constructed by ‘properly contracting’ all Lorentz vector and spinor
indices so that the resultant Lagrangian does not carry free indices of these types. Indices are
‘properly contracted’ in a convenient way by means of (numerically) invariant tensors. These are
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constant tensors that are left invariant by Poincaré transformations, i.e., they have vanishing
δε-transformations (3.35). We know already an invariant tensor, namely the Minkowski metric
ηµν (recall that, by definition, Lorentz transformations leave ηµν invariant, cf. (3.3)). Another
invariant tensor is the Levi-Civita tensor εµ1...µn (also called permutation tensor) which is
totally antisymmetric and defined according to

ε0...n−1 = 1, εµ1...µi...µj ...µn = −εµ1...µj ...µi...µn ∀i, j (i 6= j). (3.41)

Actually, εµ1...µn is invariant only under Lorentz transformations that are continuously connec-
ted to the identity (so-called proper and orthochronous Lorentz transformations) and these
are the only ones we consider here7. Let us verify explicitly that εµ1...µn is an invariant tensor
under proper and orthochronous Lorentz transformations (since the components of εµ1...µn are
constant they are clearly invariant under spacetime translations). To this end we apply (3.14)
to εµ1...µn . We obtain

δεε
µ1...µn = −

n∑
i=1

εµi
%ε

µ1...µi−1%µi+1...µn .

Owing to (3.41), the r.h.s. of the latter equation is totally antisymmetric in µ1 . . . µn. Hence,
it is proportional to εµ1...µn (in n dimensions a totally antisymmetric object Tµ1...µn fulfills
Tµ1...µn = T 0...n−1εµ1...µn). Contracting the expression on the r.h.s. with εµ1...µn , one obtains
that the proportionality constant is −εµµ which vanishes owing to εµν = −ενµ. Hence,

δεε
µ1...µn = 0. (3.42)

Further important invariant tensors under proper and orthochronous Lorentz transformations
are the Γ-matrices. Recall that Γµ is a 2k × 2k matrix (for n = 2k or n = 2k + 1). We
denote its entries by Γµ

α
β . The positions of the spinor indices α and β indicate how Lorentz

transformations act on these indices: α is treated as the index of the spinor ψ in (3.28), β as
the index of a spinor ψ̄ transforming contragrediently to ψ according to δεψ̄ = εµνx

ν∂µψ̄ +
1
2ε

%σψ̄Σ%σ (see section 3.4.3 for how such spinors are constructed)8. The index µ of Γµ is
transformed as a covariant vector index (we use greek letters from the beginning of the alphabet
to denote spinor indices whereas greek letters from the middle or end of the alphabet denote
vector indices). This gives

δεΓµ
α

β = ε%µΓ%
α

β − 1
2ε

%σΣ%σ
α

γΓµ
γ

β + 1
2ε

%σΓµ
α

γΣ%σ
γ

β.

Returning to matrix notation and suppressing the writing of spinor indices, the r.h.s. of the
latter equation reads ε%µΓ%− 1

2ε
%σ[Σ%σ,Γµ]. Using (3.24) one easily verifies that this vanishes.

Hence,
δεΓµ

α
β = 0. (3.43)

Equations (3.42) and (3.43) are to be interpreted with care because εµ1...µn and Γµ
α

β are
constants (pure numbers) and constants are not transformed when inspecting symmetries of
the type we are interested in (e.g., in L = m

2 q̇
2 we do not transform m

2 ). What equations
(3.42) and (3.43) actually mean is that the constancy of these objects is compatible with
Poincaré transformations. That is, when discussing Poincaré symmetry we are allowed to treat
these particular objects (and, more generally, all Poincaré invariant tensors) as fields which
transform according to their indices, in spite of the fact that they are not fields because it makes

7In addition there are Lorentz transformations that contain the space inversion P : t 7→ t, xi 7→ −xi or the
time reversal T : t 7→ −t, xi 7→ xi (or both P and T ). εµ1...µn is not invariant under T , under P only if n is
odd, and under PT only if n is even. Any Lorentz transformation is either proper and orthochronous, or it is
the product of a proper and orthochronous Lorentz transformation with P , T or PT .

8Our conventions are such that Γµ acts on ψ from the left according to (Γµψ)α = Γµ
α

βψ
β which shows that

the α-index of Γµ
α

β is to be treated like the indices of ψ while the β-indices are contracted with the indices of
ψ and should therefore be treated as the indices of ψ̄.
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no difference whether or not they are transformed. Viewing them as transforming objects is
particularly convenient for the construction of invariant actions because one can immediately
read off the transformation properties of functions composed of fields and invariant tensors
from the index structure.

3.4.1 Free scalar field

The infinitesimal Poincaré transformations of a scalar field have been given in (3.8). The
transformation of the spacetime derivatives of a scalar field are obtained by applying ∂µ to
(3.8):

δε∂µϕ = ∂µ(δεϕ) = ∂µ(ε%νx
ν∂%ϕ) = ε%νx

ν∂%∂µϕ+ ε%µ∂%ϕ . (3.44)

This shows that ∂µϕ is a covariant vector field (cf. (3.12)). As a consequence, the product
∂µϕ∂νϕ is a (0,2)-tensor field, i.e., it transforms according to (3.14) with (r, s) = (0, 2). Hence,
contraction of ∂µϕ∂νϕ with ηµν results in a scalar quantity and the following Lagrangian trans-
forms scalarly under Poincaré transformations (the reader is invited to check this explicitly):

L([ϕ]) = −1
2
ϕ,µϕ,νη

µν − m2

2
ϕ2. (3.45)

The corresponding Poincaré invariant action is S[ϕ] =
∫
dnxL([ϕ]).

3.4.2 Free vector (gauge) field

The infinitesimal Poincaré transformations of a covariant vector field have been given in (3.12).
Analogously to (3.44) one verifies that the following so-called field strength tensors Fµν and
Fµν of Aµ are tensor fields of type (0,2) and (2,0), respectively:

Fµν = ∂µAν − ∂νAµ , Fµν = ηµ%ηνσF%σ . (3.46)

An appropriate Lagrangian for Aµ which transforms scalarly under Poincaré transformations
is

L([A]) = −1
4
FµνF

µν . (3.47)

The corresponding Poincaré invariant action is S[ϕ] =
∫
dnxL([A]). This action is gauge

invariant, as we shall discuss later.

3.4.3 Free spinor field

To construct Poincaré invariant actions for a spinor field ψ transforming according to (3.28)
one uses that the spinor field

ψ̄ := ψ†Γ0, ψ† = (ψ1∗, ψ2∗, . . . ) (3.48)

transforms ‘contragrediently’ to ψ under Poincaré transformations, i.e., according to

δεψ̄ = ε%σx
σ∂%ψ̄ + 1

2ε
%σψ̄Σ%σ . (3.49)

The notation ψ† = (ψ1∗, ψ2∗, . . . ) in (3.48) indicates that ψ† in (3.48) is viewed as a ‘row
spinor’ (in contrast to the ‘column spinor’ ψ in (3.28)) whose components are the complex
conjugated components of ψ. Accordingly, ψ̄ = (ψ̄1, ψ̄2, . . . ) in (3.49) is viewed as a row spinor
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too. The derivation of (3.49) is the subject of exercise 12. Here we only note that it follows
from

∀µ : Γµ
† = Γ0ΓµΓ0 , (3.50)

which itself is a consequence of the Dirac algebra (3.18) with Minkowski metric as in (3.4) and
the unitarity of the Γ-matrices (3.29) that we have assumed with no loss of generality9.

By means of ψ̄ one constructs the following Lagrangian:

L([ψ]) = i ψ̄Γµψ,µ + imψ̄ψ, (3.51)

where i is the imaginary unit and m is a real mass parameter. Using (3.28), (3.49) and (3.24)
it is straightforward to verify that L([ψ]) transforms scalarly under Poincaré transformations
(alternatively, one can conclude this using that the Γ-matrices are Poincaré invariant tensors).
Hence, S[ψ] =

∫
dnxL([ψ]) is a Poincaré invariant action.

The factors i in (3.51) ensure that the Lagrangian is real up to a total divergence. To show
this we compute the complex conjugates of ψ̄ψ and ψ̄Γµψ,µ:

(ψ̄ψ)∗ = (ψ̄ψ)† = (ψ†Γ0ψ)† = ψ†Γ0
†ψ†† = ψ†(−Γ0)ψ = −ψ̄ψ, (3.52)

(ψ̄Γµψ,µ)∗ = (ψ†Γ0Γµψ,µ)† = ψ†,µΓµ†Γ0
†ψ†† = ψ†,µ(Γ0ΓµΓ0)(−Γ0)ψ

= (∂µψ
†)Γ0Γµψ = ∂µ(ψ†Γ0Γµψ)− ψ†Γ0Γµ∂µψ = ∂µ(ψ̄Γµψ)− ψ̄Γµψ,µ . (3.53)

(3.52) shows that ψ̄ψ is purely imaginary. Hence, imψ̄ψ is real. According to (3.53), ψ̄Γµψ,µ is
purely imaginary up to the (real) total divergence ∂µ(ψ̄Γµψ). Hence, iψ̄Γµψ,µ is real up to the
total divergence ∂µ(iψ̄Γµψ). A truly real Lagrangian is obtained by using i

2 ψ̄Γµψ,µ− i
2 ψ̄,µΓµψ

in place of iψ̄Γµψ,µ.

Remark: Whether or not there is factor i in front of the ‘mass term’ mψ̄ψ in (3.51) depends
on the conventions. Indeed, choosing a Minkowski metric with signature (+ − · · ·−) in place
of (−+ · · ·+), equations (3.48)–(3.50) still hold for unitary Γ-matrices, but in place of (3.52)
one obtains (ψ̄ψ)∗ = ψ̄ψ because one has Γ0

† = Γ0
−1 = Γ0 rather than Γ0

† = Γ0
−1 = −Γ0

(because the Dirac algebra gives in this case Γ0Γ0 = 1).

3.5 Conserved currents and tensors

Using equation (2.6) it is straightforward to determine the conserved currents which correspond
to Poincaré symmetries when the Lagrangian transforms scalarly as in (3.40) and depends only
on the fields and their first order derivatives (for Lagrangians depending also on higher order
derivatives equation (2.6) gets replaced by a more complicated expression). Equation (3.40)
gives δεL = ∂µK

µ with Kµ = εµL + εµνx
νL. Using this in equation (2.6), we obtain the

conserved currents
Jµ = εµL+ εµσx

σL− (δεφi)
∂L

∂φi
,µ

. (3.54)

Using now equation (3.35) in equation (3.54), the latter becomes

Jµ = εµL+ εµσx
σL− (ενφi

,ν + ε%σx
σφi

,% − 1
2 ε

%σS%σ
i
jφ

j)
∂L

∂φi
,µ

. (3.55)

These currents are conserved for every choice of εµ and ε%σ. To extract the conserved quantities
corresponding to εµ and ε%σ respectively, we pick in (3.55) the terms involving εµ and ε%σ:

Jµ = −ενTν
µ + 1

2 ε
%σJ%σ

µ, (3.56)
9In the general case, without referring to a particular signature of the Minkowski metric or assuming unitarity

of the Γ-matrices, one has ψ̄ = ψ†A where A relates the matrices Γµ to Γµ
† or −Γµ

† according to Γµ
† = AΓµA

−1

or −Γµ
† = AΓµA

−1. (3.50) represents the case −Γµ
† = AΓµA

−1 with A = Γ0.
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Tν
µ = φi

,ν

∂L

∂φi
,µ

− δµ
νL , (3.57)

J%σ
µ = (δµ

%xσ − δµ
σx%)L− (xσφ

i
,% − x%φ

i
,σ − S%σ

i
jφ

j)
∂L

∂φi
,µ

= x%Tσ
µ − xσT%

µ + S%σ
i
jφ

j ∂L

∂φi
,µ

. (3.58)

Since the current Jµ is conserved for every choice of εµ and ε%σ, Tν
µ and J%σ

µ provide a
conserved current for every choice of indices ν and [%σ]:

∀ ν : ∂µTν
µ ≈ 0, ∀ [%σ] : ∂µJ%σ

µ ≈ 0. (3.59)

Tν
µ is called the energy-momentum tensor.

3.6 Exercises 11–13

Exercise 11: Poincaré algebra
a) The infinitesimal Poincaré transformations of a scalar field ϕ read

δεϕ = (εµPµ + 1
2ε

µνMµν)ϕ, Pµϕ = ∂µϕ, Mµνϕ = (xν∂µ − xµ∂ν)ϕ.

Verify that

[Mµν , P%]ϕ = (η%νPµ − η%µPν)ϕ,
[Mµν ,M%σ]ϕ = (ην%Mµσ − ηµ%Mνσ − ηνσMµ% + ηµσMν%)ϕ.

b) The infinitesimal Lorentz transformations of a contravariant vector field V µ read

δεV
% = εµνx

ν∂µV
% − ε%σV

σ.

Determine the corresponding spin matrices Sµν with entries Sµν
%
σ by rewriting −ε%σV

σ in the
form − 1

2ε
µνSµν

%
σV

σ (mind that Sµν
!= −Sνµ). Verify that the matrices Sµν fulfill equation

(3.16) and write explicitly the matrices S01 and S12 in four dimensions.

Exercise 12: Dirac adjoint spinor field
Assume that {Γ0, . . . ,Γn−1} is a unitary representation of the Dirac algebra, i.e., Γµ

† = Γµ
−1

for all µ, and {Γµ,Γν} = 2ηµν1, with Minkowski metric as in (3.4). Furthermore let M s
µν

denote the spin part of Mµν (M s
µνφ

i = −Sµν
i
jφ

j). Show that this implies (with ψ̄ = ψ†Γ0,
Σµν = 1

4 [Γµ,Γν ], M s
µνψ = −Σµνψ):

a) ∀µ : Γ0ΓµΓ0 = Γµ
†

b) Σµν
† = Γ0ΣµνΓ0 (hint: use the result of a)

c) M s
µνψ

† = −ψ†Γ0ΣµνΓ0 (hint: use M s
µνψ

∗ = (M s
µνψ)∗ and the result of b)

d) M s
µνψ̄ = ψ̄Σµν (hint: use the result of c)

Exercise 13: Energy-momentum tensor for a scalar field
Determine the energy-momentum tensor (3.57) for the Lagrangian (3.45) and show T0

0 ≥ 0.

Solution of exercise 11
a) The general rules [δε, ∂µ] = 0 and δεx

µ = 0 imply [Mµν , ∂%] = 0, [Pµ, ∂ν ] = 0, Mµνx
% = 0

and Pµx
ν = 0. Furthermore one has ∂µxν = ∂µ(ην%x

%) = ην%δ
%
µ = ηνµ. This gives:

[Mµν , P%]ϕ = Mµν∂%ϕ− P%(xν∂µ − xµ∂ν)ϕ
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= ∂%Mµνϕ− (xν∂µ − xµ∂ν)P%ϕ

= ∂%(xν∂µ − xµ∂ν)ϕ− (xν∂µ − xµ∂ν)∂%ϕ

= (ην%∂µ − ηµ%∂ν)ϕ = (ην%Pµ − ηµ%Pν)ϕ
[Mµν ,M%σ]ϕ = Mµν(xσ∂% − x%∂σ)ϕ− (µ↔ %, ν ↔ σ)

= (xσ∂% − x%∂σ)Mµνϕ− (µ↔ %, ν ↔ σ)
= (xσ∂% − x%∂σ)(xν∂µ − xµ∂ν)ϕ− (µ↔ %, ν ↔ σ)
= ην%(xσ∂µ − xν∂σ)ϕ+ · · · = ην%Mµσϕ+ . . .

b) One has

− ε%σV
σ = −ε%νηνσV

σ = −εµνδ%
µηνσV

σ = − 1
2ε

µν(δ%
µηνσ − δ%

νηµσ)V σ

⇒ Sµν
%
σ = δ%

µηνσ − δ%
νηµσ

Notice: viewing V σ as a column vector, the index % of Sµν
%
σ is a row index of Sµν , and σ is a

column index. Hence, the matrix product SµνS%σ reads

(SµνS%σ)λ
τ = Sµν

λ
ϕS%σ

ϕ
τ = (δλ

µηνϕ − δλ
ν ηµϕ)(δϕ

% ηστ − δϕ
ση%τ )

= δλ
µην%ηστ − δλ

ν ηµ%ηστ − δλ
µηνση%τ + δλ

ν ηµση%τ

⇒ [SµνS%σ]λτ = (SµνS%σ)λ
τ − (µ↔ %, ν ↔ σ)

= δλ
µην%ηστ − δλ

ση%νηµτ + . . .

= ην%(δλ
µηστ − δλ

σηµτ ) + · · · = ην%Sµσ
λ

τ + . . .

= (ην%Sµσ − ηµ%Sνσ − ηνσSµ% + ηµσSν%)λ
τ

For S01 we obtain S01
%
σ = δ%

0η1σ−δ%
1η0σ which shows that the only nonvanishing entries of S01

are S01
0
1 = 1 and S01

1
0 = 1. Analogously one determines S12. In four dimensions this gives

S01 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , S12 =


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 .

Solution of exercise 12
a) For µ = 0 we have Γ0Γ0Γ0 = −Γ0 = Γ0

† owing to Γ0Γ0 = −1 (⇐ Dirac algebra) and
−Γ0 = Γ0

−1 = Γ0
† (⇐ Dirac algebra and unitarity of Γ0). For µ = i we have Γ0ΓiΓ0 =

−ΓiΓ0Γ0 = Γi = Γi
−1 = Γi

† (⇐ Dirac algebra and unitarity of Γi).

b) Σµν
† = 1

4(ΓµΓν)† − (µ ↔ ν) = 1
4(Γν

†Γµ
†) − (µ ↔ ν) = 1

4(Γ0ΓνΓ0Γ0ΓµΓ0) − (µ ↔ ν) =
1
4(−Γ0ΓνΓµΓ0)− (µ↔ ν) = 1

4Γ0[Γµ,Γν ]Γ0 = Γ0ΣµνΓ0.

c) M s
µνψ

† = M s
µνψ

∗> = (M s
µνψ

∗)> = (M s
µνψ)∗> = (−Σµνψ)† = −ψ†Σµν

† = −ψ†Γ0ΣµνΓ0.

d) M s
µνψ̄ = M s

µν(ψ
†Γ0) = (M s

µνψ
†)Γ0 = −ψ†Γ0ΣµνΓ0Γ0 = ψ†Γ0Σµν = ψ̄Σµν .

Solution of exercise 13

∂L

∂ϕ,µ
= −ϕ,νη

µν = −∂µϕ ⇒ Tν
µ = −∂νϕ∂

µϕ+ δµ
ν (

1
2
∂%ϕ∂

%ϕ+
m2

2
ϕ2)

⇒ T0
0 = −1

2
∂0ϕ∂

0ϕ+
1
2
∂iϕ∂

iϕ+
m2

2
ϕ2 =

1
2
(∂0ϕ)2 +

1
2

∑
i

(∂iϕ)2 +
m2

2
ϕ2 ≥ 0.


