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2 Symmetries in classical field theory

2.1 Notation and correspondence to classical mechanics

The main complication of classical field theory as compared to classical mechanics is that the
dynamical variables (‘fields’) depend on more than one variable. Fields φi may be understood
as mappings from a base space B to a target space Z,

φi : B → Z, (x0, x1, . . . , xn−1) 7→ φi(x0, x1, . . . , xn−1).

n denotes the dimension of the base space, coordinates of the base space are denoted by xµ,
µ = 0, 1, . . . , n − 1. Often the base space is B = Rn and represents n-dimensional spacetime,
with x0 the time coordinate, and xi, i = 1, . . . , n− 1 the space coordinates. The target space
depends on the field theory considered. E.g., a Dirac spinor field in 4-dimensional spacetime
has 4 complex valued components, i.e., in this case the target space is Z = C4.

The equations of motion of a field theory are partial differential equations rather than ordinary
differential equations as in classical mechanics of point masses. Furthermore, in a field theory
the conserved quantities which occur in Noethers first theorem are conserved currents Jµ (see
below) rather than constants of motion as in classical mechanics. Apart from these differences,
the description and theory of symmetries in classical field theory is a rather straightforward
generalization of the one in classical mechanics. Actually, a classical mechanical system can be
viewed as a field theory with a 1-dimensional base space.

The jet space approach can also be used in classical field theory: the jet variables are now the
coordinates xµ of the base space, the fields φi and jet variables φi

,µ, φi
,µν , . . . which represent

the first and higher order derivatives of the fields with respect to the coordinates xµ.

The following table collects quantities in classical mechanics and their counterparts in field
theory which are relevant to symmetries. In addition it introduces some notation.

Mechanics Field theory
base space coordinates t xµ, µ = 0, ..., n− 1
dynamical variables qi, i = 1, ..., N φi, i = 1, ..., N

derivatives (jet space) q̇i = dqi

dt , q̈i = d2qi

dt2
, ... φi

,µ = ∂µφi, φi
,µν = ∂ν∂µφi, ...

d

dt
=

∂

∂t
+ q̇i ∂

∂qi
+ q̈i ∂

∂q̇i
+ ... ∂µ =

∂

∂xµ
+ φi

,µ

∂

∂φi
+ φi

,µν

∂

∂φi
,ν

+ ...

trajectories/mappings qi(t), φi(x) = φi(x0, ..., xn−1),

q̇i(t) =
dqi(t)

dt
, ... φi

,µ(x) =
∂φi(x)
∂xµ

, ...

action S[q] =
∫

dt L([q], t) S[φ] =
∫

dnxL([φ], x)

dnx = dx0...dxn−1

L([q], t) = L(qi, q̇i, ..., t) L([φ], x) = L(φi, φi
,µ, ..., x0, ..., xn−1)

Euler-Lagr. operator
δ

δqi
=

∂

∂qi
− d

dt

∂

∂q̇i
+ ...

δ

δφi
=

∂

∂φi
− ∂µ

∂

∂φi
,µ

+ ...

equations of motion Li([q], t) = 0 (Lagr. systems: Li = δL
δqi ) Li([φ], x) = 0 (Lagr. systems: Li = δL

δφi )

infinites. symmetry δεL([q], t) = K̇([q], t) δεL([φ], x) = ∂µKµ([φ], x)

conservation laws J̇([q], t) = GiLi([q], t), ∂µJµ([φ], x) = GiLi([φ], x),

Gi = gi(0)([q], t) + gi(1)([q], t) d
dt + ... Gi = gi([φ], x) + giµ([φ], x)∂µ + ...
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2.2 Conserved currents and charges, weak equality

As remarked above, the field theoretical analog of mechanical constants of motion are conserved
currents Jµ([φ], x) whose n-dimensional divergence ∂µJµ([φ(x)], x) vanishes for all solutions
φi(x) of the equations of motion. Therefore we denote current conservation by

∂µJµ([φ], x) ≈ 0 (2.1)

where ≈ denotes weak equality defined according to

A([φ], x) ≈ B([φ], x) :⇔ A([φ], x)−B([φ], x) = GiLi([φ], x),

Gi = gi([φ], x) + giµ([φ], x)∂µ + . . . (2.2)

According to this definition two functions that are weakly equal coincide whenever evaluated
for fields φi(x) which fulfill the equations of motion (Li([φ(x)], x) = 0)4.

(2.1) is a continuity equation: splitting up the sum ∂µJµ into the temporal part and the spatial
part, it reads

∂0J
0 + div ~J ≈ 0, (2.3)

where we have set ~J = (J1, . . . , Jn−1) and div denotes the spatial divergence div ~J = ∂iJ
i.

Often one associates to Jµ a charge defined according to

Q =
∫

V
dV J0([φ], x), (2.4)

where V is a fixed (time independent) (n − 1)-dimensional spatial volume. Equation (2.3)
implies

Q̇ =
∫

V
dV ∂0J

0([φ(x)], x)

≈ −
∫

V
dV div ~J([φ(x)], x)

= −
∫

∂V
d~S ~J([φ(x)], x), (2.5)

where we used the divergence theorem of vector analysis (Gauss-Ostrogradsky theorem) stating
that the volume integral of a divergence div~F over V is equal to the surface integral of ~F over
the boundary ∂V of V (d~S denotes the surface elements of ∂V with surface normal pointing
outward). For solutions φi(x) to the equations of motion that fall off sufficiently fast at the
boundary ∂V , (2.5) implies Q̇ = 0. Hence, charges defined according to (2.4) in terms of
conserved currents are conserved quantities when evaluated for solutions of the equations of
motion that fall off sufficiently fast at the boundary of the integration volume V .

2.3 Global symmetries

Symmetries in field theory are defined analogously to symmetries in classical mechanics. We
denote infinitesimal global symmetry transformations of the fields by

δεφ
i = ε Qi([φ], x).

They arise from finite transformations

xµ 7→ x̃µ = xµ − ε ξµ(x) + O(ε2),

4Notice that (1.69) is just the special case of (2.1) for n = 1.
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φi(x) 7→ φ̃i(x̃) = φi(x) + ε Q̂i(x) + O(ε2)

according to

δεφ
i(x) = φ̃i(x)− φi(x) + O(ε2) = ε

(
ξµ(x)∂µφi(x) + Q̂i(x)

)
=: ε Qi(x),

where we used the abbreviation ξµ(x) = ξµ([φ(x)], x) and analogously for Q̂i(x) and Qi(x), as
well as the Taylor expansion

φ̃i(x̃) = φ̃i(x− εξ + O(ε2)) = φ̃i(x)− εξµ(x)∂µφi(x) + O(ε2).

Analogously to the definition we used in classical mechanics, δεφ
i measures the change of the

function φi(x) at fixed arguments x0, . . . , xn−1; infinitesimal transformations εξµ of the base
space coordinates xµ are contained in δεφ

i through the shift term εξµ∂µφi. Accordingly, δε

leaves the base space coordinates inert and commutes with the ∂µ,

δεx
µ = 0, [δε, ∂µ] = 0.

In jet space, δε takes the form

δε = ε Qi([φ], x)
∂

∂φi
+ ε (∂µQi([φ], x))

∂

∂φi
,µ

+ . . .

Finite and infinitesimal symmetries of an action S[φ] =
∫

dnxL([φ], x) are defined analgously
to our definitions in classical mechanics, with total divergences ∂µKµ in place of total time
derivatives K̇. Hence, δε is a symmetry of S[φ] if there are functions Kµ([φ], x) such that

δε L([φ], x) = ∂µKµ([φ], x).

2.4 Noethers first theorem (simple version)

The field theoretical analog of Noethers first theorem as presented in section 1.8 is straight-
forward. For notational simplicity we assume again that the Lagrangian contains at most first
order derivatives of the fields, and only sketch the derivation since it is very similar to the one
in section 1.8.

a) We assume first that δε is a symmetry of S[φ] =
∫

dnxL(φ, ∂φ, x), i.e.,

δεL = ∂µKµ

for some Kµ. Owing to

δε L = (δεφ
i)

δL

δφi
+ ∂µ

(
(δεφ

i)
∂L

∂φi
,µ

)
we obtain

∂µJµ = (δεφ
i)

δL

δφi
, Jµ = Kµ − (δεφ

i)
∂L

∂φi
,µ

. (2.6)

Hence, Jµ is a conserved current (which may vanish).

b) Next we assume that Jµ is a conserved current of a system with action S[φ] =∫
dnxL(φ, ∂φ, x), i.e.,

∂µJµ = (gi + giµ∂µ + . . . )
δL

δφi
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for some functions gi([φ], x), giµ([φ], x), . . . Steps analogous to those in part b) of section 1.8
yield

∂µKµ = εQi ∂L

∂φi
+ε(∂µQi)

∂L

∂φi
,µ

, Kµ = ε
(
Jµ−giµ δL

δφi
+· · ·+Qi ∂L

∂φi
,µ

)
, Qi = gi−∂µgiµ+. . .

(2.7)
Hence, δε with δεφ

i = εQi is a symmetry of S[φ].

Again, a) and b) do not establish a bijective correspondence of symmetries and conserved
currents. On the one hand the current Jµ in (2.6) may vanish (cf. the example in the comments
in section 1.8). On the other hand the Qi in (2.7) can vanish because there are conserved
currents whose divergence ∂µJµ vanishes identically (these currents are of the form Jµ =
∂νK

νµ with Kνµ = −Kµν and thus fulfill ∂µJµ = ∂µ∂νK
νµ = 0). A bijective correspondence

of symmetries and conserved currents is obtained for equivalence classes of symmetries and
conserved currents.

2.5 Energy and momentum conservation

As an application of Noethers first theorem in field theory we treat Lagrangians which do not
depend explicitly on the base space coordinates xµ,

∂L

∂xµ
= 0 ∀xµ.

In this case the transformations δεφ
i = εµφi

,µ constitute a symmetry of the action for every
choice of constants εµ. Indeed,

δεφ
i = εµφi

,µ ⇒ δε = εµ
(
∂µ −

∂

∂xµ

)
⇒ δεL = ∂µ(εµL).

For Lagrangians depending at most on first order derivatives of the fields, (2.6) yields the
conserved currents

Jµ = εµL− ενφi
,ν

∂L

∂φi
,µ

= −ενTν
µ, Tν

µ = φi
,ν

∂L

∂φi
,µ

− δµ
ν L

This yields for each value of ν a conserved current Tν
µ. In a relativistic theory the Tν

µ are the
components of the energy-momentum tensor (field).

2.6 Technical remark on jet space operations

The jet variables φi
,µν , φi

,µν%, . . . which represent second or higher order derivatives of the
fields are not all independent because they are symmetric in the derivative indices (φi

,µν = φi
,νµ

etc.). This reflects that the partial derivatives represented by these indices commute (assuming
well-behaved fields) and implies, e.g., that the jet variables φi

,01 and φi
,10 are to be considered

identical. Working with an overcomplete set of variables is a subtle matter and can cause
inconsistencies when not dealt with carefully. E.g.: Does the derivative of φi

,10 w.r.t. φi
,01 vanish,

or not? Should both ∂
∂φi

,01
and ∂

∂φi
,10

occur in the Euler-Lagrange operator δ
δφi ?

The problem can be handled in various ways. An obvious solution is to work with an indepen-
dent set of jet variables, such as {φi

,µ1...µk
: µi ≤ µi+1, k = 0, 1, . . . } which contains φi

,01 but not
φi

,10. The latter solution is clean but has several disadvantages, such as making formulae rather
unpleasant and loosing manifest covariance in Poincaré or diffeomorphism invariant theories.
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A more convenient way to handle the problem is the use of symmetrical derivative operations
∂S/∂φi

,µ1...µk
defined according to

∂Sφj
,ν1...νl

∂φi
,µ1...µk

= δj
i δk

l δµ1

(ν1
. . . δµk

νk)

where (ν1 . . . νk) denotes complete symmetrization with weight one, e.g.

δµ1

(ν1
δµ2

ν2) =
1
2

(δµ1
ν1

δµ2
ν2

+ δµ1
ν2

δµ2
ν1

).

This has unfamiliar consequences, such as

∂Sφ1
,01

∂φ1
,01

=
∂Sφ1

,01

∂φ1
,10

=
1
2

,

but avoids several unpleasant features of other approaches (such as complicated combinatorical
factors in various formulae). In particular the Euler-Lagrange and the derivative operators take
the simple forms

δ

δφi
=

∂

∂φi
− ∂µ

∂

∂φi
,µ

+ ∂ν∂µ
∂S

∂φi
,µν

+ · · ·+ (−)k∂µ1 . . . ∂µk

∂S

∂φi
,µ1...µk

+ . . .

∂µ =
∂

∂xµ
+ φi

,µ

∂

∂φi
+ φi

,νµ

∂

∂φi
,ν

+ φi
,%νµ

∂S

∂φi
,%ν

+ · · ·+ φi
,ν1...νkµ

∂S

∂φi
,ν1...νk

+ . . .


