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1.3 Formulation and definition of continuous global symmetries

1.3.1 Infinitesimal symmetries

We shall use the following general structure and mathematical set-up of infinitesimal global
symmetry transformations δε:

δεq
i(t) = ε Qi([q], t), ε = constant (1.11)
δεt = 0 (1.12)[

δε,
d

dt

]
= 0 (1.13)

δε(f g) = (δεf) g + f (δεg) ∀f, g
(
with f = f([q], t)), g = g([q], t)

)
(1.14)

Comments:

• (1.11) is the general form of an infinitesimal symmetry transformation of qi. ε is a constant
small parameter (it may be omitted or absorbed in Qi, but I prefer to write it explicitly for
later purposes). The notation Qi([q], t) means that Qi can depend on qi, q̇i, q̈i, . . . and also
explicitly on t. Of course, since δε is to be a symmetry, the Qi are not arbitrary functions
but are subject to Eq. (1.16) below.

• (1.12) states that t is not transformed. As we shall see later, this can always be imposed
(with no loss of generality), even in cases such as ‘time translation symmetry’. The reason
is that transformations of t can be ‘shifted’ to transformations of the qi, as we shall discuss
later.

• According to (1.13), infinitesimal variations commute with the total time derivative. On
qi this reflects that δεq̇

i is the total time derivative of δεq
i, and analogously for the trans-

formations of higher order time derivatives of qi,

δεq̇
i = ε Q̇i([q], t), δεq̈

i = ε Q̈i([q], t), . . .

On t, (1.13) holds owing to (1.12).

• (1.14) states that δε is a so-called derivation, i.e. it fulfills the product rule (on functions
of the qi, q̇i, q̈i, . . . , t).

• A transformation of this type is called ‘global’ because of the constancy of the parameter
ε. Later we shall meet ‘local’ transformations whose parameters are arbitrary functions of
t rather than constants.

• Equations (1.11)–(1.14) can be summarized by writing δε as a differential operator:

δε = ε Qi([q], t)
∂

∂qi
+ ε Q̇i([q], t)

∂

∂q̇i
+ ε Q̈i([q], t)

∂

∂q̈i
+ . . . (1.15)

This differential operator acts on functions of the qi, q̇i, q̈i, . . . , t. Actually, in order to make
this approach to symmetries mathematically precise, it can and should be formulated in the
space of functions of the qi, q̇i, q̈i, . . . , t (the mathematical term for this space is ‘jet space’).
Even though we have not introduced this mathematical setting formally, we have been using
it implicitly and intuitively already (e.g., by viewing the Lagrangian as a function of the
qi, q̇i, q̈i, . . . , t, and thus as a jet space function).

Definition: A derivation δε as above is called an infinitesimal (global) symmetry of an action
S =

∫
dt L([q], t) if δεL is a total time derivative, i.e., if there is a K([q], t) such that

δεL([q], t) =
d

dt
K([q], t). (1.16)
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Comments:

• Owing to (1.8), equation (1.16) is equivalent to

δ

δqi

(
δεL([q], t)

)
= 0 ∀qi (1.17)

• The occurrence of a total time derivative on the right hand side in (1.16) is motivated,
among other things, by:

◦ Two Lagrangians which differ only by a total time derivative are to be considered equi-
valent, at least as far as the equations of motions are concerned (because they give rise
to the same equations of motions, cf. (1.7)). Hence, it is natural to define symmetries so
that the symmetries of equivalent Lagrangians agree too. This is guaranteed by (1.16),
as one has (as a consequence of (1.14)),

L2 = L1 +
df

dt
⇒ δεL2 = δεL1 +

d(δεf)
dt

(1.18)

◦ As we shall see later, Noethers first theorem (stating the correspondence of global sym-
metries and conservations laws) holds in its general form only for symmetries defined
according to (1.16).

• Notice that (1.16) implies, in general, invariance of the action S =
∫

dtL under δε only up
to a ‘surface term’ (which does not vanish in general):

δεL =
dK

dt
⇒ δεS =

∫ t2

t1

dt δεL =
∫ t2

t1

dt
dK

dt

= K
∣∣∣t2
t1

= K([q(t2)], t2)−K([q(t1)], t1) (1.19)

Examples:

1. Free 1-dimensional motion:

L =
m

2
ẋ2 (1.20)

δεx = ε ⇒ δεL = 0 (1.21)

δηx = ηẋ ⇒ δηL = η m ẍ ẋ =
d

dt

(
η

m

2
ẋ2

)
(1.22)

2. Exercise 2: Verify that δε is a symmetry of L with

L =
m

2
(ẋ2 + ẏ2 + ż2)− U(r), r =

√
x2 + y2 + z2 (1.23)

δεx = εy, δεy = −εx, δεz = 0 (infinites. rotation) (1.24)

3. Exercise 3: As exercise 2 for1

L([x, ϕ]) =
M + m

2
ẋ2 (1 + tan2 α) +

m

2
L2 ϕ̇2

+ m Lϕ̇ ẋ (cos ϕ + tanα sinϕ)
− (M + m) g x tanα + m g L cos ϕ

δεx = ε, δεϕ = 0

1Notice: this is the Lagrangian (1.10) derived in exercise 1 (section 1.2).
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Solution to exercise 2:

δεL =(δεx)
∂L

∂x
+ (δεẋ)

∂L

∂ẋ
+ analogous terms for y and z

=(δεx)
dU

dr

∂r

∂x
+ (δεẋ)

∂L

∂ẋ
+ analogous terms for y and z

=(δεx)
dU

dr

x

r
+ (δεẋ)

∂L

∂ẋ
+ analogous terms for y and z

=εy
dU

dr

x

r
+ εẏ

∂L

∂ẋ
− εx

dU

dr

y

r
− εẋ

∂L

∂ẏ

=εy
dU

dr

x

r
+ εẏ m ẋ− εx

dU

dr

y

r
− εẋm ẏ

=0

Solution to exercise 3:

δεL =(δεx)
∂L

∂x
+ (δεẋ)

∂L

∂ẋ
+ (δεϕ)

∂L

∂ϕ
+ (δεϕ̇)

∂L

∂ϕ̇

=ε
∂L

∂x
= −ε (M + m) g tanα =

d

dt

(
− t ε (M + m) g tanα

)
(1.25)
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1.3.2 Finite symmetries

Definition: A transformation t 7→ t̃(t), qi(t) 7→ q̃i(t̃) is called a symmetry of S[q] =∫
dtL([q(t)], t) if S[q̃] =

∫
dt̃ L([q̃(t̃)], t̃) equals S[q], except for an integrated total time de-

rivative
∫

dt dK([q(t)],t)
dt (K may vanish), for all intervals of integration and all trajectories qi(t),∫ t̃2(t2)

t̃1(t1)
dt̃ L([q̃(t̃)], t̃) =

∫ t2

t1

dt
(
L([q(t)], t) +

dK([q(t)], t)
dt

)
∀t1, t2, qi(t). (1.26)

Comment: Notice that S[q̃] involves the same Lagrangian as S[q]: there is the same function
L on the left hand side of (1.26) as on the right hand side (and not a function L̃ on the left
hand side which may differ from the function L on the right hand side; just the arguments of
L on the left hand side differ from those on the right hand side).

Examples: We shall now present five different symmetries of the following action describing
a point mass m in a homogeneous gravitational field of acceleration g:

S[x, y, z] = m

∫
dt

(
1
2 (ẋ2(t) + ẏ2(t) + ż2(t))− g z(t)

)
(1.27)

Each symmetry involves a constant parameter α (we consider each symmetry separately from
the others and use the same symbol for the respective parameter).

• Constant shifts of x:

t̃ = t,

 x̃(t)
ỹ(t)
z̃(t)

 =

 x(t) + α
y(t)
z(t)

 (1.28)

This is a symmetry of (1.27) with S[x̃, ỹ, z̃] = S[x, y, z].

• Constant shifts of y:

t̃ = t,

 x̃(t)
ỹ(t)
z̃(t)

 =

 x(t)
y(t) + α

z(t)

 (1.29)

This is a symmetry of (1.27) with S[x̃, ỹ, z̃] = S[x, y, z].

• Constant shifts of z:

t̃ = t,

 x̃(t)
ỹ(t)
z̃(t)

 =

 x(t)
y(t)

z(t) + α

 (1.30)

This is a symmetry of (1.27) with

S[x̃, ỹ, z̃] = S[x, y, z] +
∫

dt
d(−m g α t)

dt
. (1.31)

• Rotations around the z-axis:

t̃ = t,

 x̃(t)
ỹ(t)
z̃(t)

 =

 cos α sinα 0
− sinα cos α 0

0 0 1

  x(t)
y(t)
z(t)

 (1.32)

This is a symmetry of (1.27) with S[x̃, ỹ, z̃] = S[x, y, z].

• Constant shifts of t:

t̃ = t− α,

 x̃(t̃)
ỹ(t̃)
z̃(t̃)

 =

 x(t)
y(t)
z(t)

 (1.33)

This is a symmetry of (1.27) with S[x̃, ỹ, z̃] = S[x, y, z] (cf. exercise 4 below).
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Exercise 4: Consider the following action (free 1-dimensional motion of a point mass m) and
transformations

S[x] =
m

2

∫
dt ẋ2(t), t̃ = h(t), x̃(t̃) = x(t). (1.34)

Determine all functions h(t) for which t 7→ t̃, x(t) 7→ x̃(t̃) is a symmetry of S[x].

Solution of exercise 4:

S[x̃] =
∫ t̃2(t2)

t̃1(t1)
dt̃ L([x̃(t̃)]) =

m

2

∫ t̃2(t2)

t̃1(t1)
dt̃

(dx̃(t̃)
dt̃

)2
. (1.35)

In order to compare this expression to S[x], we switch the integration variable from t̃ to t,
using

dt̃ = dt
dt̃

dt
= dt

dh(t)
dt

= dt ḣ(t), (1.36)

dx̃(t̃)
dt̃

=
dt

dt̃

dx(t)
dt

=
1

ḣ(t)
ẋ(t) (1.37)

(Notice: in (1.37) we have used x̃(t̃) = x(t)). This gives

m

2

∫ t̃2(t2)

t̃1(t1)
dt̃

(dx̃(t̃)
dt̃

)2
=

m

2

∫ t2

t1

dt
1

ḣ(t)
ẋ2(t) (1.38)

The requirement that this is equal to m
2

∫ t2
t1

dt ẋ2(t), except for an integrated total time deri-
vative, for all intervals [t1, t2] imposes

m

2
1

ḣ(t)
ẋ2(t) !=

m

2
ẋ2(t) +

dK([x(t)], t)
dt

. (1.39)

(1.39) must be satisfied for all trajectories x(t). This means it translates to the equation

m

2
1

ḣ(t)
ẋ2 !=

m

2
ẋ2 +

dK([x], t)
dt

. (1.40)

which has to hold identically in the variables t, x and ẋ (i.e., in jet space). Applying the
Euler-Lagrange derivative with respect to x to (1.40), we obtain2

− d

dt

( 1
ḣ(t)

m ẋ
)

!= −m ẍ ⇔
( d

dt

1
ḣ(t)

)
ẋ +

1
ḣ(t)

ẍ
!= ẍ. (1.41)

Since (1.41) must hold identically in ẋ and ẍ, we can compare the coefficient functions of ẋ
and ẍ separately:

d

dt

1
ḣ(t)

!= 0 ∧ 1
ḣ(t)

!= 1 (1.42)

This imposes ḣ(t) != 1 and thus

h(t) = t− α, α = constant. (1.43)
2Recall that the total time derivative of any function has vanishing Euler-Lagrange derivatives. Hence,

whatever function K in (1.40) is, the Euler-Lagrange derivative of dK
dt

w.r.t. x vanishes.
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1.4 From finite to infinitesimal global symmetries

We consider finite symmetries involving a constant parameter whose values can vary conti-
nuously over some interval such that for one of these values the symmetry transformations
reduce to the identity. In the following we shall denote this parameter by α and assume, with
no loss of generality, that α = 0 gives the identity. Examples can be found in section 1.3.2 (in
all these examples α can take all values between −∞ and +∞). Such symmetries are called
global symmetries continuously connected to the identity: global because α does not depend on
t, continuous because α can vary continuously over a certain range, connected to the identity
because there is a value of α which reproduces the identity. In the next few lines we shall
emphasize the presence of α by denoting finite symmetry transformations of this type by

t 7→ t̃(t;α), qi(t) 7→ q̃i(t̃;α) with t̃(t; 0) = t, q̃i(t̃(t; 0); 0) = qi(t). (1.44)

Furthermore we assume that the transformations can be expanded as power series’ in α around
α = 0. The infinitesimal version of such symmetry transformations (along the lines of section
1.3.1) is defined according to

δε t = 0 (1.45)

δε qi(t) = q̃i(t; ε)− qi(t) to first order in ε

= ε lim
α→0

q̃i(t;α)− qi(t; 0)
α

= ε
∂q̃i(t;α)

∂α

∣∣∣
α=0

(1.46)

Notice that, as in section 1.3.1, δε vanishes on t, see (1.45), even though in (1.44) we allow
transformations t 7→ t̃ with t̃ 6= t. Furthermore, according to (1.46), δεq

i(t) compares q̃i and
qi at the same argument t (rather than q̃i(t̃) and qi(t)). This means that δεq

i(t) measures the
infinitesimal change of the function qi(t).

In order to explain that and why this definition of infinitesimal transformations makes sense,
we shall prove:

Lemma: If a set of transformations (1.44) constitutes a symmetry of an action S[q] =∫
dtL([q(t)], t), then the corresponding transformations δε defined according to (1.45) and

(1.46) constitute an infinitesimal symmetry of S[q].

Proof: Expanding t̃ and q̃i in ε and dropping the argument ε in t̃ and q̃i (i.e., using t̃(t) in
place of t̃(t; ε) etc.), we have

t̃(t) = t− ε f(t) + O(ε2) (1.47)

q̃i(t̃) = qi(t) + ε Q̂i(t) + O(ε2) (1.48)

⇒ q̃i(t− ε f(t)) + O(ε2) = q̃i(t)− ε f(t) q̇i(t) + O(ε2) = qi(t) + ε Q̂i(t) + O(ε2)

⇒ δε qi(t) = q̃i(t)− qi(t) + O(ε2) = ε f(t) q̇i(t) + ε Q̂i(t). (1.49)

for some functions f(t) and Q̂(t) (we have used the Taylor expansion q̃i(t − εf(t)) = q̃i(t) −
εf(t) ˙̃qi(t) + O(ε2) = q̃i(t)− εf(t) q̇i(t) + O(ε2)). We now examine S[q̃] to first order in ε:

S[q̃] =
∫ t̃2(t2)

t̃1(t1)
dt̃ L([q̃(t̃)], t̃)

=
∫ t2

t1

dt
(
1− ε ḟ(t)

)
L([q̃(t− ε f(t))], t− ε f(t)) + O(ε2)
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=
∫ t2

t1

dt
(
1− ε ḟ(t)

) (
L([q̃(t)], t)− ε f(t) L̇([q(t)], t)

)
+ O(ε2)

=
∫ t2

t1

dt
(
1− ε ḟ(t)

) (
L([q(t) + δεq(t)], t)− ε f(t) L̇([q(t)], t)

)
+ O(ε2)

=
∫ t2

t1

dt
(
L([q(t) + δεq(t)], t)− ε

d

dt

(
f(t) L([q(t)], t)

))
+ O(ε2), (1.50)

where from line 1 to 2 we switched the variable of integration from t̃ to t (the factor 1− εḟ(t)
results from dt̃ = d(t− εf(t)) = dt (1− εḟ(t)), from line 2 to 3 we used the Taylor expansion
L([q̃(t − εf)], t − εf) = L([q̃(t)], t) − εfL̇([q(t)], t) + O(ε2), from line 3 to 4 we used q̃(t) =
q(t)+δεq(t), cf. (1.49), and from line 4 to 5 we rearranged terms. Now, by assumption, t 7→ t̃(t),
qi(t) 7→ q̃i(t̃) is a symmetry of S[q], i.e.,∫ t̃2(t2)

t̃1(t1)
dt̃ L([q̃(t̃)], t̃)−

∫ t2

t1

dtL([q(t)], t) =
∫ t2

t1

dt
dK([q(t)], t)

dt
(1.51)

for some K([q(t)], t). Using (1.50) in (1.51), we obtain∫ t2

t1

dt
(
L([q(t) + δεq(t)], t)− ε

d

dt

(
f(t) L([q(t)], t)

)
− L([q(t)], t)

)
=

∫ t2

t1

dt ε
dK̂([q(t)], t)

dt
+ O(ε2), (1.52)

where we used that K([q(t)], t) = εK̂([q(t)], t) + O(ε2) for some K̂ (K vanishes at ε = 0 since
S[q̃] equals S[q] for ε = 0). Rearranging (1.52), it reads∫ t2

t1

dt
(
L([q(t) + δεq(t)], t)− L([q(t)], t)

)
=

∫ t2

t1

dt ε
d

dt

(
K̂([q(t)], t) + f(t) L([q(t)], t)

)
+ O(ε2). (1.53)

Notice that the integrand on the left hand side is just δεL + O(ε2),

L([q(t) + δεq(t)], t)− L([q(t)], t) = δεL([q(t)], t) + O(ε2). (1.54)

Furthermore, recall that (1.53) holds for all intervals [t1, t2]. This implies (to O(ε)):

δεL([q(t)], t) = ε
d

dt

(
K̂([q(t)], t) + f(t) L([q(t)], t)

)
. (1.55)

Since (1.55) holds for all trajectories qi(t), it gives rise to an equation in jet space. In jet space
f(t) has to be replaced by f([q], t), for in general f can also involve the qi and time derivatives
thereof. Hence, in jet space (1.55) becomes

δεL([q], t) = ε
d

dt

(
K̂([q], t) + f([q], t) L([q], t)

)
. (1.56)

This completes the proof since (1.56) shows that δε is indeed an infinitesimal symmetry of S[q]
in accordance with the definition in section 1.3.1.

Comment: The proof shows that transformations t̃(t) = t − εf(t) can be absorbed into the
transformations of the qi through contributions εf(t) q̇i(t) to δεq

i(t). As a consequence, there
is a term ε d

dt(f(t) L([q], t)) in δεL([q], t).
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1.5 From infinitesimal to finite global symmetries

Finite symmetry transformations are obtained from the infinitesimal symmetry transformations
δε according to

t̃ = t, q̃i = exp(δε) qi (1.57)

(with q̃i(t) = (exp(δε)qi)(t)) where exp(δε) is the exponential function of δε:

exp(δε) =
∞∑

n=0

1
n!

(δε)n. (1.58)

Hence
q̃i =

(
1 + δε + 1

2(δε)2 + 1
6(δε)3 + . . .

)
qi

This interrelation of infinitesimal and finite transformations is based on the special features
of the exponential function which imply that exp(δε) applied to any function f([q], t) equals
f([q̃], t) with q̃i as in (1.57):

exp(δε) f([q], t) = f([exp(δε)q], t) ∀f([q], t). (1.59)

(For polynomials f and formal power series’ this will be proven in an exercise). (1.59) implies
the following result:

Lemma: If δε is an infinitesimal symmetry of an action S[q] =
∫

dt L([q], t), then the corre-
sponding transformations (1.57) constitute a finite symmetry of S[q].

Proof: Let δε be an infinitesimal symmetry of S[q] =
∫

dtL([q], t), i.e.,

δε L([q], t) = ε
d

dt
K([q], t) (1.60)

for some function K (owing to t̃ = t we suppress the argument t of qi and q̃i). Then

L([q̃], t)
(1.57)
= L([exp(δε)q], t)

(1.59)
= exp(δε) L([q], t)

(1.58)
= L([q], t) +

∞∑
n=1

1
n!

(δε)nL([q], t) = L([q], t) +
∞∑

n=1

1
n!

(δε)n−1δεL([q], t)

(1.60)
= L([q], t) +

∞∑
n=1

1
n!

(δε)n−1ε
d

dt
K([q], t)

(1.13)
= L([q], t) +

d

dt

∞∑
n=1

1
n!

(δε)n−1ε K([q], t)

= L([q], t) +
d

dt

(
ε

exp(δε)− 1
δε

K([q], t)
)
. (1.61)

Differential equations for q̃i: Let us consider, for simplicity, infinitesimal transformations
δεq

i = εQi(q, t) (where the Qi depend only on the qi and possibly explicitly on t but not
on q̇i, q̈i, . . . ; the formulae can be generalized). Applying δε to (1.57) and specializing to the
particular case δεq

i = εQi(q, t), we obtain:

δε q̃i = δε

(
exp(δε) qi

)
= exp(δε)

(
δε qi

)
= ε exp(δε) Qi(q, t)

(1.59)
= ε Qi(q̃, t). (1.62)

Owing to δεf(q, t) = εQj ∂
∂qj f(q, t), this gives the following differential equations for the q̃i(q, t):

Qj(q, t)
∂q̃i(q, t)

∂qj
= Qi(q̃, t). (1.63)
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1.6 Exercises 5 – 9

Exercise 5: Derive the infinitesimal transformations δεx, δεy, δεz arising from

a) t̃ = t,

 x̃(t)
ỹ(t)
z̃(t)

 =

 cos α sinα 0
− sinα cos α 0

0 0 1

  x(t)
y(t)
z(t)


b) t̃ = t− α, x̃(t̃) = x(t), ỹ(t̃) = y(t), z̃(t̃) = z(t)

Exercise 6: Consider the following infinitesimal transformations of u(t) and v(t):

δεu = ε v, δεv = ε u (1.64)

a) Compute exp(δε)u and exp(δε)v to third order in ε.

b) Guess or derive closed formulae for ũ = exp(δε)u and ṽ = exp(δε)v.

c) Write the differential equations (1.63) arising from (1.64).

d) Check whether your result of b) solves the equations obtained in c).

Exercise 7: Consider the following infinitesimal transformation of u(t):

δεu = ε u2 (1.65)

a) Compute exp(δε)u.

b) Write the differential equation (1.63) arising from (1.65).

c) Solve the equations obtained in b) and compare the solution to the result in a).

Exercise 8: This exercise serves to prove equation (1.59) for functions f([q], t) that are poly-
nomials or formal power series’ in the qi, q̇i, . . .

a) Show that, for any g and h, exp(δε) applied to the product gh is equal to the product of
exp(δε)g and exp(δε)h:

∀g, h : exp(δε) (g h) =
(

exp(δε) g
)(

exp(δε) h
)

(1.66)

Hint: Use exp(δε) =
∑∞

n=0
1
n! (δε)n on the left and right hand side of (1.66) and show that

the coefficients of ((δε)mg)((δε)nh) agree on both sides for all m and n. In order to get an idea
how it works you may first expand (1.66) to second order in ε.

b) Use (1.66) to show that (1.59) holds for all functions f([q], t) that are polynomials or formal
power series’ in the qi, q̇i, . . . and may depend additionally explicitly on t.

Exercise 9: Show that δεx = ε
...
x is an infinitesimal symmetry of L([x]) = m

2 ẋ2.
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Solutions of exercises 5 – 9

Exercise 5:

a) δε x = ε y, δε y = −ε x, δε z = 0
b) δε x = ε ẋ, δε y = ε ẏ, δε z = ε ż

Exercise 6:

a) exp(δε) u = u + εv + 1
2ε

2u + 1
6ε

3v + O(ε4) = (1 + 1
2ε

2) u + (ε + 1
6ε

3) v + O(ε4)
exp(δε) v = v + εu + 1

2ε
2v + 1

6ε
3u + O(ε4) = (1 + 1

2ε
2) v + (ε + 1

6ε
3) u + O(ε4)

b) ũ = u cosh ε + v sinh ε, ṽ = v cosh ε + u sinh ε

c) v
∂ũ

∂u
+ u

∂ũ

∂v
= ṽ, v

∂ṽ

∂u
+ u

∂ṽ

∂v
= ũ

d) v
∂ũ

∂u
+ u

∂ũ

∂v
= v cosh ε + u sinh ε = ṽ, v

∂ṽ

∂u
+ u

∂ṽ

∂v
= v sinh ε + u cosh ε = ũ, o.k.

Exercise 7:

a) ũ = u + εu2 + ε2u3 + ε3u4 + · · · =
∞∑

n=0

u (εu)n =
u

1− εu

b) u2 dũ

du
= ũ2 (here

∂

∂u
was replaced by

d

du
because of ũ = ũ(u))

c) u2 dũ

du
= ũ2 ⇒ dũ

ũ2
=

du

u2
⇒ 1

ũ
=

1
u

+ C, C = constant

⇒ ũ =
1

1
u + C

=
u

1 + Cu
. This agrees with a) for C = −ε.

Exercise 8:
a) εn-terms in exp(δε)(gh):

1
n!

(δε)n (g h) =
1
n!

n∑
k=0

(
n

k

)(
(δε)k g)

)(
(δε)n−k h)

)
(1.67)

εn-terms in
(

exp(δε) g
)(

exp(δε) h
)
:

n∑
k=0

( 1
k!

(δε)k g
)( 1

(n− k)!
(δε)n−k h

)
(1.68)

Owing to 1
n!

(
n
k

)
= 1

k! (n−k)! , (1.67) is equal to (1.68) which proves (1.66).

b) (1.66) implies that (1.59) holds for arbitrary monomials in the qi, q̇i, . . . (e.g., for g = q1

and h = q2, (1.66) yields exp(δε)(q1q2) = (exp(δε)q1)(exp(δε)q2); for g = q1q2 and h = q̇1, it
yields exp(δε)(q1q2q̇1) = (exp(δε)(q1q2))(exp(δε)q̇1) = (exp(δε)q1)(exp(δε)q2)(exp(δε)q̇1) etc).
Owing to exp(δε)(a+b) = exp(δε)a+exp(δε)b (for all a, b) (1.59) holds also for arbitrary linear
combinations of such monomials and thus for polynomials and formal power series’ in the qi,
q̇i, . . . with coefficients which can depend arbitrarily on t (recall that δεt = 0).

Exercise 9:
δεL([x]) = m ε

·
x
····
x= m ε

d

dt
(ẋ

...
x − 1

2 ẍ2)
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1.7 Constants of motion

A constant of motion of a mechanical system is a function J([q], t) that is constant for eve-
ry solution of the equations of motion. This motivates the following definition which is not
restricted to Lagrangean systems:

Definition: Let Li([q], t) = 0 denote the equations of motion of a mechanical system (for
Lagrangean systems one has Li = δL

δqi ). A function J of the qi, q̇i, . . . , t is called a constant of
motion (or conserved quantity) of the system if its total time derivative is a linear combination
of the Li, L̇i, . . . with coefficient functions that may depend on the qi, q̇i, . . . , t:

dJ([q], t)
dt

= GiLi([q], t), Gi = gi(0)([q], t) + gi(1)([q], t)
d

dt
+ gi(2)([q], t)

d2

dt2
+ . . . (1.69)

Example: In this example we use standard 3D vector notation (scalar product: ~a ·~b, vector
product: ~a×~b). We treat the motion of a point mass m in a Coulomb potential with Lagrangian

L([~r]) =
m

2
~̇r · ~̇r +

k

r
, r =

√
~r · ~r, ~r = (x, y, z). (1.70)

The equations of motion deriving from this Lagrangian read Lx = 0, Ly = 0, Lz = 0 with

Lx =
δL

δx
= −kx

r3
−mẍ, Ly =

δL

δy
= −ky

r3
−mÿ, Lz =

δL

δz
= −kz

r3
−mz̈.

Let ~L denote the vector with components Lx,Ly,Lz:

~L = (Lx,Ly,Lz) = −k~r

r3
−m~̈r.

Well-known constants of motion are the energy E, the components of the angular momentum
~L and the components of the Runge-Lenz vector ~R, with

E =
m

2
~̇r · ~̇r − k

r
(1.71)

~L = m~r × ~̇r (1.72)

~R = ~̇r × ~L− k~r

r
(1.73)

Each of these quantities verifies equation (1.69) because its total time derivative is linear in
the components of ~L:3

Ė = m~̈r · ~̇r +
k~r · ~̇r
r3

= − ~L · ~̇r (1.74)

~̇L = −~r × ~L (1.75)

~̇R = −2~r( ~L · ~̇r) + ~̇r( ~L · ~r) + ~L(~̇r · ~r) = ~L × (~̇r × ~r) + ~̇r × ( ~L × ~r) (1.76)

1.8 Noethers first theorem – simple version

Noethers first theorem establishes, for Lagrangean mechanical systems, a correspondence of
infinitesimal global symmetries and constants of motion. We shall now derive the simple (‘stan-
dard’) version of the theorem, which however does not yet provide a bijective correspondence
of symmetries and constants of motion (see comments below).

3The computation of ~̇L and ~̇R is given in section 1.9.
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a) We assume that δε is a symmetry of S[q] =
∫

dt L([q], t) and shall show that δε gives rise to a
constant of motion. For definiteness and simplicity of formulae we shall assume L = L(qi, q̇i, t)
(it is straightforward to generalize the reasoning to the case that L depends on higher order
time derivatives of the qi as well).

Our assumption that δε is a symmetry means

δεL =
dK

dt
(1.77)

(for some K). For every δεL(qi, q̇i, t) one has:

δεL = (δεq
i)

∂L

∂qi
+ (δεq̇

i)
∂L

∂q̇i

= (δεq
i)

∂L

∂qi
+

d

dt

(
(δεq

i)
∂L

∂q̇i

)
− (δεq

i)
d

dt

∂L

∂q̇i

= (δεq
i)

δL

δqi
+

d

dt

(
(δεq

i)
∂L

∂q̇i

)
. (1.78)

Combining (1.77) and (1.78) gives

dJ

dt
= (δεq

i)
δL

δqi
, J = K − (δεq

i)
∂L

∂q̇i
. (1.79)

Hence, J given by K − (δεq
i) ∂L

∂q̇i is a constant of motion.

b) Now we assume that J is a constant of motion of a system described by an action S[q] =∫
dtL([q], t). This means that

J̇ = (gi(0) + gi(1) d

dt
+ . . . )

δL

δqi
. (1.80)

We shall show that this corresponds to an infinitesimal symmetry of S[q]. As a first step we
rewrite the r.h.s. of (1.80):

J̇ = (gi(0) − ġi(1) + . . . )
δL

δqi
+

d

dt

(
gi(1) δL

δqi
+ . . .

)
. (1.81)

In the next step we bring the total time derivative on the r.h.s. of (1.81) to the l.h.s.:

J̇ ′ = Qi δL

δqi
, J ′ = J − gi(1) δL

δqi
+ . . . , Qi = gi(0) − ġi(1) + . . . (1.82)

As a third step we rewrite Qi δL
δqi :

Qi δL

δqi
= Qi

( ∂L

∂qi
− d

dt

∂L

∂q̇i

)
= Qi ∂L

∂qi
− d

dt

(
Qi ∂L

∂q̇i

)
+ Q̇i ∂L

∂q̇i
. (1.83)

Finally we use (1.83) in (1.82), add to the resultant equation the total time derivative
d
dt

(
Qi ∂L

∂q̇i

)
(in order to move that term to the l.h.s. of the equation) and multiply it by ε.

This gives

K̇ = ε Qi ∂L

∂qi
+ ε Q̇i ∂L

∂q̇i
= δεL,

K = ε
(
J ′ + Qi ∂L

∂q̇i

)
, δεq

i = εQi = ε (gi(0) − ġi(1) + . . . ). (1.84)

Hence, δε is an infinitesimal symmetry of S[q].
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Comments

• Notice that in the above derivation of Noethers first theorem we only used (repeatedly)
fġ = d

dt(fg)− ḟg. Hence, this version of Noethers first theorem appears to be a banality.
However, it is important to realize that it is a banality only because we used the definition
of symmetries according to (1.16) and, in particular, the definition of constants of motion
according to (1.69). Hence, this version of Noethers first theorem actually rests on the
insight that symmetries and, especially, constants of motion can be formulated according
to (1.16) and (1.69), respectively.

• The above version of Noethers first theorem does not establish a bijective correspondence
of symmetries and constants of motion, for:

◦ It can happen that J = K − (δεq
i) ∂L

∂q̇i (see (1.79)) vanishes identically. Hence, there
are symmetries which do not correspond to constants of motion. Example:

L =
m

2
(ẋ2 + ẏ2), δεx = εÿ, δεy = −εẍ

⇒ δεL = ε m
d

dt
(ẋÿ − ẏẍ) ⇒ J = 0. (1.85)

◦ Constant functions, such as J = 1, do not correspond to symmetries. Hence, there
are constants of motion which do not correspond to symmetries (notice that constant
functions are constants of motion according to our definition).

• A bijective correspondence between symmetries and constants of motion is obtained for
equivalence classes of symmetries and constants of motion where two symmetries are called
equivalent if they differ by a trivial symmetry, and two constants of motion are called
equivalent if they differ by a trivial constant of motion. A trivial symmetry transformation
vanishes for all solutions of the equations of motion up to a gauge transformation, a trivial
constant of motion is a linear combination of the Li and their total time derivatives with
coefficient functions that may depend on the t, qi, q̇i, . . . plus a constant function (i.e., a
trivial constant of motion equals a constant function for all solutions of the equations of
motion). This will be explained later in more detail.

1.9 Exercise 10 - Motion in the Coulomb potential: Conservation of angular
momentum and Runge-Lenz vector, and the corresponding symmetries

We treat again the system with Lagrangian (1.70), i.e., a point mass m in a Coulomb potential
U(r) = −k/r and shall use the same notation as in the example in section 1.7.

a) Verify that the components of ~L and ~R given in equations (1.72) and (1.73) respectively are
constants of motion by deriving equations (1.75) and (1.76).

b) Determine the infinitesimal symmetry transformations which correspond to the conservation
of the third components Lz and Rz of ~L and ~R, respectively.

c) How is the result of b) contained in the following infinitesimal transformations δ~ε? (Guess
the notation used here!)

δ~ε ~r = ~ε× (~r × ~̇r) + ~r × (~ε× ~̇r)

d) Verify explicitly that the transformations δ~ε generate symmetries of the action, and use
the result to conclude that these symmetries correspond via Noethers first theorem to the
constants of motion given by the components of ~R.
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Solution

a) Direct computations give:

~̇L = m~r × ~̈r = −~r × ~L

~̇R = ~̈r × ~L + ~̇r × ~̇L− k~̇r

r
+ k~r

~̇r · ~r
r3

= − 1
m

(
~L+

k~r

r3

)
× ~L− ~̇r × (~r × ~L)− k~̇r

r
+ k~r

~̇r · ~r
r3

= −
(

~L+
k~r

r3

)
× (~r × ~̇r)− ~̇r × (~r × ~L)− k~̇r

r
+ k~r

~̇r · ~r
r3

= −~r
(

~L · ~̇r +
k~r · ~̇r
r3

)
+ ~̇r

(
~L · ~r +

k~r · ~r
r3

)
− ~r(~̇r · ~L) + ~L(~̇r · ~r)− k~̇r

r
+ k~r

~̇r · ~r
r3

= −2~r ( ~L · ~̇r) + ~̇r ( ~L · ~r) + ~L (~̇r · ~r)

b) The expressions for L̇z and Ṙz contained in equations (1.75) and (1.76) are of the form
J̇ = QiLi where Qi are functions rather than operators (i.e., in this case (1.69) reduces to
Gi = gi(0) ≡ Qi). Whenever this is the case, the infinitesimal transformations corresponding
to J are simply given by δεq

i = εQi, cf. section 1.8 (especially equation (1.84)). Hence, in the
present case one can read off the transformations of x, y, z from the coefficients of Lx,Ly,Lz

in L̇z and Ṙz, respectively.

Lz : L̇z = −xLy + yLx ⇒ δεx = εy, δεy = −εx, δεz = 0

Rz : Ṙz = −2z( ~L · ~̇r) + ż( ~L · ~r) + Lz(~̇r · ~r)
= Lx(−2zẋ + żx) + Ly(−2zẏ + ży) + Lz(−2zż + żz + ẋx + ẏy + żz)

= Lx(−2zẋ + żx) + Ly(−2zẏ + ży) + Lz(ẋx + ẏy) ⇒
δεx = ε(−2zẋ + żx)
δεy = ε(−2zẏ + ży)
δεz = ε(ẋx + ẏy)

c) ~ε corresponds to ~R, i.e., εz corresponds to Rz. Setting ~ε = (0, 0, ε), one obtains

δ(0,0,ε)~r = ~ε× (~r × ~̇r) + ~r × (~ε× ~̇r)

= ~r(~ε · ~̇r) + ~ε(~r · ~̇r)− 2~̇r(~ε · ~r)
= ~r εż + (0, 0, ε)(ẋx + ẏy + żz)− 2~̇r εz

= ε (xż − 2ẋz, yż − 2ẏz, ẋx + ẏy)

d) A somewhat lengthy calculation yields:

δ~ε L = K̇, K = ~ε ·
(
~L× ~̇r − k~r

r

)
.

Owing to L = L(qi, q̇i), the corresponding constants of motion are J = K− ∂L
∂q̇i δεq

i, cf. (1.79).
This gives

J = K − ∂L

∂ẋ
δ~ε x− ∂L

∂ẏ
δ~ε y − ∂L

∂ż
δ~ε z

= K − 2~ε · (~L× ~̇r) = ~ε ·
(
~̇r × ~L− k~r

r

)
= ~ε · ~R


