Seiberg-Witten maps and anomalies in noncommutative Yang-Mills theories

F. Brandt (MPI Leipzig)

- ► Existence, construction and ambiguities of SW maps
- ► Gauge anomalies and anomaly freedom in NC YM theories
- ▶ BRST cohomological perspective on both topics

Refs.: G. Barnich, FB, M. Grigoriev, hep-th/0308092 FB, C.P. Martin, F. Ruiz Ruiz, hep-th/0307292

Introduction

Weyl-Moyal product:

$$f_1 \star f_2 = f_1 \exp(\overleftarrow{\partial_{\mu}} \frac{\mathrm{i}}{2} g \theta^{\mu\nu} \overrightarrow{\partial_{\nu}}) f_2, \quad \theta^{\mu\nu} = -\theta^{\nu\mu} = \text{constant}$$

Action:

$$\widehat{I}[\widehat{A}] = -\frac{1}{4} \int d^n x \operatorname{Tr} (\widehat{F}_{\mu\nu} \star \widehat{F}^{\mu\nu}), \quad \widehat{F}_{\mu\nu} = \partial_{\mu}\widehat{A}_{\nu} - \partial_{\nu}\widehat{A}_{\mu} + [\widehat{A}_{\mu} \star \widehat{A}_{\nu}]$$

Gauge transformations:

$$\hat{\delta}_{\hat{\lambda}} \hat{A}_{\mu} = \partial_{\mu} \hat{\lambda} + [\hat{A}_{\mu} \, ; \, \hat{\lambda}] \equiv \hat{D}_{\mu} \hat{\lambda}$$

SW maps:

$$\widehat{A}_{\mu} = \widehat{A}_{\mu}(A,g) = A_{\mu} + O(g), \quad \widehat{\lambda} = \widehat{\lambda}(\lambda,A,g) = \lambda + O(g)$$

with A_{μ} and λ Lie algebra valued, such that

$$\delta_{\lambda} A_{\mu} = \partial_{\mu} \lambda + [A_{\mu}, \lambda] \equiv D_{\mu} \lambda \implies \delta_{\lambda} \widehat{A}_{\mu} (A, g) = (\widehat{\delta}_{\widehat{\lambda}} \widehat{A}_{\mu}) (A, \lambda, g)$$

Consistent deformations

Consider an action $I^{(0)}[\varphi]$ with gauge invariance $\delta_{\lambda}^{(0)}$, i.e. $\delta_{\lambda}^{(0)}I^{(0)}[\varphi]=0$.

Consistent deformations of $I^{(0)}[\varphi]$, $\delta_{\lambda}^{(0)}$:

$$I[\varphi, g] = I^{(0)}[\varphi] + \sum_{k \ge 1} g^k I^{(k)}[\varphi], \quad \delta_{\lambda} = \delta_{\lambda}^{(0)} + \sum_{k \ge 1} g^k \delta_{\lambda}^{(k)}, \quad \delta_{\lambda} I[\varphi, g] = 0$$

Equivalent deformations: related by field redefinitions $\hat{\varphi}(\varphi, g)$, $\hat{\lambda}(\lambda, \varphi, g)$:

$$\widehat{I}[\widehat{\varphi}(\varphi,g),g] = I[\varphi,g], \quad (\widehat{\delta}_{\widehat{\lambda}}\widehat{\varphi})(\varphi,\lambda,g) \approx \delta_{\widehat{\lambda}}\widehat{\varphi}(\varphi,g)$$

Trivial deformations: $I \sim I^{(0)}$ and $\delta \sim \delta^{(0)}$

Two types of nontrivial deformations:

Type I: $I \nsim I^{(0)}$, $\delta \sim \delta^{(0)}$

Type II: $I \nsim I^{(0)}$, $\delta \nsim \delta^{(0)}$

SW map: NC YM theories are type I deformations of YM theories

Result on deformations of YM theories [G. Barnich, FB, M. Henneaux 1994, 2000]

Pure YM theories (including eff. theories):

- Semisimple gauge group: only consistent deformations of type I, i.e.: no nontrivial deformations of gauge transformations at all!
- ▶ Gauge group with abelian factors, esp. free theories (1st order result):

$$I^{(1)} \sim I_{\text{inv}}^{(1)} + \int d^{n}x \left(\underbrace{k_{i}^{\Delta}A_{\mu}^{i}j_{\Delta}^{\mu}}_{\text{Noether type}} - \underbrace{\frac{1}{2}f_{ijk}F^{\mu\nu i}A_{\mu}^{j}A_{\nu}^{k}}_{\text{YM type}} \right)$$

$$+ \int d^{n}x \underbrace{k_{ijk}[-\frac{1}{2}F^{\mu\nu i}A_{\mu}^{j}A_{\nu}^{k} + \frac{2}{n-4}x^{\mu}(F_{\mu\rho}^{i}F^{\nu\rho j} - \frac{1}{4}\delta_{\mu}^{\nu}F_{\rho\sigma}^{i}F^{\rho\sigma j})A_{\nu}^{k}]}_{\text{peculiar type } (n\neq 4)}$$

where

 $I_{\mathrm{inv}}^{(1)}$: $\int G$ -inv. polynomials in F,DF,\ldots plus Chern-Simons terms in odd dims. A_{μ}^{i} : abelian gauge fields j_{Δ}^{μ} : gauge invariant conserved currents of the undeformed theory $k_{i}^{\Delta}, f_{ijk}, k_{ijk}$: constants with $f_{ijk} = f_{[ijk]}, \ k_{ijk} = -k_{ikj} = k_{jik}$

Corresponding first order deformations of the gauge transformations:

$$\delta_{\lambda}^{(1)}A_{\mu}^{a} \sim k_{i}^{\Delta} \, \lambda^{i}G_{\Delta\mu}^{a} \quad \text{if } A_{\mu}^{a} \text{ nonabelian}$$

$$\delta_{\lambda}^{(1)}A_{\mu}^{i} \sim \underbrace{k_{j}^{\Delta} \, \lambda^{j}G_{\Delta\mu}^{i}}_{\text{Noether type}} + \underbrace{f_{ijk}A_{\mu}^{j}\lambda^{k}}_{\text{YM type}} + \underbrace{k_{ijk}(A_{\mu}^{j} + \frac{2}{n-4}\,x^{\nu}F_{\nu\mu}^{j})\lambda^{k}}_{\text{peculiar type } (n\neq 4)}$$

where $G^a_{\Delta\mu}$ is the (infinitesimal) transformation of A^a_μ under the global symmetry of $I^{(0)}$ that corresponds to j^μ_Λ :

$$G^{a}_{\Delta\mu} \frac{\delta I^{(0)}}{\delta A^{a}_{\mu}} = \partial_{\mu} j^{\mu}_{\Delta}$$

▶ Deformed gauge transformations do not involve derivatives of λ^i ⇒ existence of SW map for U(N) NC YM theories

BRST-cohomological approach to consistent deformations and SW maps

Field-antifield formalism:

Fields: $\{\phi\} = \{\varphi,C\} \stackrel{\text{paired}}{\longleftrightarrow} \text{ antifields: } \{\phi^*\} = \{\varphi^*,C^*\}$

Antibracket:
$$(F,G) = \int d^n x \, F\left(\frac{\overleftarrow{\delta}}{\delta\phi} \, \frac{\overrightarrow{\delta}}{\delta\phi^*} - \frac{\overleftarrow{\delta}}{\delta\phi^*} \, \frac{\overrightarrow{\delta}}{\delta\phi}\right) G$$

Master action:
$$S[\phi, \phi^*] = I[\varphi] + \int d^n x \, \varphi^* \delta_C \varphi + \dots$$
 such that $\underbrace{(S, S) = 0}_{\text{ordinary action}}$

BRST differential (coboundary operator): $s = (S, \cdot)$ $(\Rightarrow s^2 = 0)$

Consistent deformations:
$$S = S^{(0)} + \sum_{k \ge 1} g^k S^{(k)}$$

Consistent deformations and local BRST-cohomology:

Master equation:
$$(S,S) = 0$$
 $\stackrel{\frac{\partial}{\partial g}}{\Rightarrow}$ $\left(S,\frac{\partial S}{\partial g}\right) = 0$ \Leftrightarrow $s\frac{\partial S}{\partial g} = 0$

Field redefinitions \longrightarrow anticanonical transformations $\widehat{\phi}(\phi, \phi^*, g)$, $\widehat{\phi}^*(\phi, \phi^*, g)$:

$$\frac{d\hat{\phi}}{dg} = (\Xi, \hat{\phi}), \quad \frac{d\hat{\phi}^*}{dg} = (\Xi, \hat{\phi}^*) \quad \Rightarrow \quad \frac{d}{dg} S(\hat{\phi}, \hat{\phi}^*, g) = \frac{\partial S}{\partial g} - (S, \Xi) = \frac{\partial S}{\partial g} - s \Xi$$

Equivalent deformations:
$$S \sim S' \quad \Rightarrow \quad \frac{\partial S}{\partial g} - \frac{\partial S'}{\partial g} = s \equiv$$

Hence: consistent deformations are determined by the cohomology H(s)

BRST-cohomological description of SW maps:

$$\{\hat{\phi}\} = \{\hat{A}_{\mu}, \hat{C}\}, \quad \{\phi\} = \{A_{\mu}, C\}$$

Master action for NC gauge theories:

$$S[\hat{\phi}, \hat{\phi}^*, g] = \int d^n x \left[-\frac{1}{4} \operatorname{Tr} \left(\hat{F}_{\mu\nu} \star \hat{F}^{\mu\nu} \right) + \hat{A}^{*\mu} \star \hat{D}_{\mu} \hat{C} + \hat{C}^* \star \left(\hat{C} \star \hat{C} \right) \right]$$

SW map:

$$S[\hat{\phi}(\phi,\phi^*,g),\hat{\phi}^*(\phi,\phi^*,g),g] = \underbrace{I_{\mathrm{eff}}[A,g]}_{\mathrm{no\ antifields}} + \int d^nx \Big[\underbrace{A^{*\mu}D_{\mu}C + C^*CC}_{\mathrm{no\ dependence\ on\ }g}\Big]$$

$$\stackrel{\frac{d}{dg}}{\Rightarrow} \frac{\partial S}{\partial g} - s \equiv = \frac{\partial I_{\rm eff}[A,g]}{\partial g} \quad \text{(antifield dependence of } \frac{\partial S}{\partial g} \text{ is trivial)}$$

$$\frac{d\hat{\phi}}{dg} = (\Xi,\hat{\phi}), \quad \frac{d\hat{\phi}^*}{dg} = (\Xi,\hat{\phi}^*) \quad \text{(diff. eqs. for SW map)}$$

Remark: for gauge group with Lie algebra $\mathfrak{g} \neq \mathfrak{u}(N)$, this applies to fields valued in enveloping algebra of \mathfrak{g} . Fields and antifields A, C, A^*, C^* that do not belong to \mathfrak{g} are set to zero in the end.

Hence: SW map
$$\Leftrightarrow \frac{\partial S}{\partial g} = s \Xi + \underbrace{\text{terms without antifields}}_{dI_{\text{eff}}/dg}$$

Existence, explicit construction and ambiguities of SW maps:

$$\frac{\partial S}{\partial a} = \frac{\mathrm{i}\theta^{\alpha\beta}}{2} \int d^n x \operatorname{Tr} \left(-\hat{F}^{\mu\nu} \star \partial_\alpha \hat{A}_\mu \star \partial_\beta \hat{A}_\nu + \hat{A}^{*\mu} \star \{\partial_\alpha \hat{A}_\mu \stackrel{\star}{,} \partial_\beta \hat{C}\} + \hat{C}^* \star \partial_\alpha \hat{C} \star \partial_\beta \hat{C} \right)$$

Existence: \leftarrow terms with antifields depend on \widehat{C} only via derivatives

Explicit construction: determination of Ξ (contracting homotopy)

Result:
$$\Xi = \frac{\mathrm{i}}{4} \theta^{\alpha\beta} \int d^n x \, \mathrm{Tr} \left(-\hat{A}^{*\mu} \{ \hat{F}_{\alpha\mu} + \partial_{\alpha} \hat{A}_{\mu} \stackrel{*}{,} \hat{A}_{\beta} \} + \hat{C}^* \{ \hat{A}_{\alpha} \stackrel{*}{,} \partial_{\beta} \hat{C} \} \right)$$

$$\frac{d\widehat{A}_{\mu}}{dg} = (\Xi, \widehat{A}_{\mu}) = \frac{\mathrm{i}}{4} \theta^{\alpha\beta} \{ \widehat{F}_{\alpha\mu} + \partial_{\alpha} \widehat{A}_{\mu} * \widehat{A}_{\beta} \}, \quad \frac{\partial \widehat{C}}{\partial g} = (\Xi, \widehat{C}) = -\frac{\mathrm{i}}{4} \theta^{\alpha\beta} \{ \widehat{A}_{\alpha} * \partial_{\beta} \widehat{C} \}$$

$$\frac{dI_{\mathsf{eff}}[\widehat{A}(A, g), g]}{dg} = \mathrm{i} \theta^{\alpha\beta} \int d^{n}x \, \mathsf{Tr} \left(\frac{1}{8} \widehat{F}_{\alpha\beta} * \widehat{F}_{\mu\nu} * \widehat{F}^{\mu\nu} - \frac{1}{2} \widehat{F}_{\alpha\mu} * \widehat{F}_{\beta\nu} * \widehat{F}^{\mu\nu} \right)$$

Ambiguities: determined by $0 = s(\Delta \Xi) + \text{terms}$ without antifields

$$d(\Delta I_{\sf eff})/dg$$

Resultant ambiguities of SW map:

$$\widehat{A}_{\mu}(A,g) = \left[\Lambda^{-1} \star \widehat{A}_{\mu}^{sp} \star \Lambda + \Lambda^{-1} \star \partial_{\mu} \Lambda \right]_{A_{\mu} \to A'_{\mu}(A,g)}$$

$$\widehat{\lambda}(\lambda, A, g) = \left[\Lambda^{-1} \star \widehat{\lambda}^{sp} \star \Lambda + \Lambda^{-1} \star \delta_{\lambda} \Lambda \right]_{A_{\mu} \to A'_{\mu}(A,g)}$$

where

$$\Lambda(A,g) = \exp_{\star}(f^B(A,g)T_B)$$
 with arbitrary $f^B(A,g)$ $\widehat{A}_{\mu}^{sp}(A,g)$, $\widehat{\lambda}^{sp}(\lambda,A,g)$ particular SW map $A'^B_{\mu}(A,g) = [A_{\mu} + W_{\mu}(A,g)]^C R^B_C(g)$ $\delta_{\lambda}W_{\mu}(A,g) = [W_{\mu}(A,g),\lambda]$ (i.e., gauge covariant) $T_B \to R^C_B(g)T_C$ (outer) Lie algebra automorphism

Hence, SW map is determined only up to (compositions of)

- ightharpoonup noncommutative gauge transformations of \widehat{A}_{μ}
- ightharpoonup gauge covariant shifts of enveloping algebra valued A_{μ}
- (outer) automorphisms of Lie(enveloping algebra)

Gauge anomalies

Chiral gauge anomalies in NC gauge theories (n = 4, 1-loop):

$$\mathcal{A}[\widehat{C}, \widehat{A}, g] = \int \mathsf{Tr}[\widehat{C} \star d(\widehat{A} \star d\widehat{A} + \frac{1}{2}\widehat{A} \star \widehat{A} \star \widehat{A})]$$

Puzzle: vanishing of ${\cal A}$ seems to impose

$$\operatorname{Tr}(T_a T_b T_c) = 0$$
 rather than $\operatorname{Tr}(T_{(a} T_b T_{c)}) = 0$

On the other hand:

SW map \Rightarrow candidate anomalies are known: same as in (effective) YM theories [G. Barnich, FB, M. Henneaux '94]:

I.
$$\int \text{Tr}[Cd(AdA + \frac{1}{2}A^3)]$$

II.
$$\int d^4x \, C \, I_{\text{inv}}(F, \text{matter})$$
 (C abelian)

III.
$$\int d^4x \left(\underbrace{C A'_{\mu} - C' A_{\mu}} \right) \underbrace{j^{\mu}_{\text{inv}}}_{\text{conserved}} + \text{terms with antifields}$$

$$\Rightarrow$$
 $A = \text{linear combination of type I.-III.} + s(...)$

Do candidate anomalies of type II or III occur in A?

Result: $\frac{dA}{dg} = s \mathcal{B}_{\star}$ with \mathcal{B}_{\star} an integrated star-polynomial (!):

$$\mathcal{B}_{\star} = \frac{\mathrm{i}\theta^{\alpha\beta}}{2} \int \operatorname{Tr} \left(\hat{A}_{\alpha} \star \partial_{\beta} d\hat{A} \star d\hat{A} - \frac{1}{2} d\hat{A}_{\alpha} \star \hat{A}_{\beta} \star d\hat{A} \star \hat{A} + \frac{3}{2} d\hat{A} \star d\hat{A} \star d\hat{A}_{\alpha} \star \hat{A}_{\beta} \right) \\ - \frac{1}{2} d\hat{A}_{\alpha} \star \hat{A}_{\beta} \star \hat{A} \star d\hat{A} + \partial_{\alpha} \hat{A}_{\beta} \star d\hat{A} \star \hat{A} \star \hat{A} + \text{terms with 5 or 6 } \hat{A}'\text{s})$$

This implies

$$\mathcal{A} = \int \text{Tr}[Cd(AdA + \frac{1}{2}A^3)] + s\,\mathcal{B}[A,g], \quad \mathcal{B}[A,g] = \int_0^g dg' \,\mathcal{B}_{\star}[\widehat{A}(A,g'),g']$$

- \triangleright A is cohomologically equivalent to standard Bardeen anomaly
- ▶ No additional anomalies or anomaly cancellation conditions (at 1-loop)
- lacktriangleright eta is the counterterm that kills the heta-dependent would-be anomalies in $\mathcal A$
- \triangleright \mathcal{B} is determined only up to BRST-invariant contributions
- \triangleright \mathcal{B} is <u>not</u> an integrated star-polynomial (in contrast to \mathcal{B}_{\star})
- SW map is essential also for anomaly issue!

Conclusions

- Existence of SW map reflects stability of YM gauge transformations under consistent deformations
- Systematic construction of SW map by BRST cohomological tools
- ightharpoonup Ambiguities of SW map: gauge transformations, gauge covariant shifts of A_{μ} and Lie algebra automorphisms in enveloping algebra
- \blacktriangleright SW maps for x-dependent θ can be analysed by the same tools
- ► No gauge anomalies or anomaly cancellation conditions in addition to those of commutative models (only well-known chiral anomalies)
- SW map essential for anomalies
- ► Counterterm \mathcal{B} that removes θ -dependence of anomalies is constructible in terms of \widehat{A}_{μ} ⇒ works for every choice of SW map