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Introduction

Construction and classification of gauge invariant interactions:

Given gauge transformations: what are the gauge invariant actions?

Given gauge invariant action: are there nontrivial consistent deformations of
the action and gauge transformations?

2 types of nontrivial deformations:
type I: only action is nontrivially deformed
type II: both action and gauge transformations are nontrivially deformed

What one finds:

» Type II deformations are very often (always?) related to conservation laws

» EXistence and structure of conservation laws of “higher order” are intimately
related to gauge symmetries

» Local BRST cohomology is a powerful tool to study these topics

Remark: algebraic renormalizability (particularly in the “modern sense”) de-
pends decisively on absence of type II deformations



Consistent deformations

Consider an action I(9)[x] with gauge invariance 5&0), ie. 5&0)1(0)@] = 0.

Consistent deformations of I(0)[y], 5&0):

Ie, gl = 1Ol + 3 ¢ 1W[g], 6y =50+ 3 g" ", ouIlp,gl =0
k>1 k>1

Trivial deformations: a deformation is called trivial if there are field redefinitions
(e, 9), A(A, ¢, g) such that

113(e, 9), 9] = I, (558) (0, M 9) = 35V 3(, 9)

Type It I 10 §~ §0)
Type II: T 4 1(0) 5 §(0)



Examples:

All familiar gauge invariant actions with free parameters;

deformation parameters = free parameters (gauge coupling constants, masses . ..

Pure YM theory:
[= —% /d% Tr (FuwFH),  Fuy = 0uA, — 8uA, + g[Ay, A
ONAp = OuX + glAp, Al
1 = _ / d"z Tr (9, 4,00 A7), 604, = 9.
) = —/d% Tr ([Ay, AJorar), 6V A, = [A,, A]
12 = %/d% Tr ([Ap, A) [AF, A7), 6P A, =0

Pure YM theory is a type II deformation of a free Maxwell-type theory



Result on deformations of YM theories

Pure YM theories (including eff. theories):

» Semisimple gauge group:
only consistent deformations of type I (no nontrivial deformations of gauge
transformations at alll)

» Gauge group with abelian factors, esp. free theories (1st order result):

1 . o
](1) ( )—|—/dnx( kAA,u]A %fiijumA;LA];)

|nv

Noether type YI\/I‘Tcype

+ [ kg =3 FIALAY + 52 b (B PP — 3 6 P00 A

peculiar tg/rpe (n#£4)
where

Il(nlv) : f G-inv. polynomials in F,DF, ... plus Chern-Simons terms in odd dims.

AL : abelian gauge fields

jZ . gauge invariant conserved currents of the undeformed theory

A . _ _
ki~ Jijk»> Kiji - constants with fiix = fi5k1, Kijk = —Kikj = Fjik



Corresponding first order deformations of gauge transformations:
5/(\1)AZ ~ kAN aAu if Af, nonabelian

5\VAL ~ AN —I—fka] /\’<+ Kiji (Al + 25 2" Fj, )Nk

7

Noether type M type peculiar type (n#4)
where G“AM is the (infinitesimal) transformation of A, under the global
symmetry of 1(0) that corresponds to jk:

o)
a 51( ) — 0, it
BH 5 AY SN

Remarks:

» Noether type deformations involve conserved currents j# (‘“conservation
laws of first order”) via jHAj,

» YM type and peculiar deformations involve “conservation laws of second
order” jHY = —jVH via jHV Al A}, where jHV = FHVF

» Higher orders — relations between the coefficients, e.qg. me[ijfk]ml =0
m

» From point of view of free theories: nonabelian YM transformations are
already deformations — further deformation impossible



Conservation laws of first and higher order

Conserved current j#:

8, 7M(p) 2 0 = 9" (p) = Gi(p,d) 51[90]

In differential form notation:

dj""t a0 (d=datoy, T = iy datt . dat e, 51

Generalization (‘“conservation law of order p"):
dj"P~0 & O M a0 (jul---upzj[ul---up])

Trivial conservation law: j7 P a~ dwnP~1

Characteristic conomology H? _ (d) (of the field equations): solutions of

char

d P ~ 0 with equivalence relation j? ~ 7 & P — P ~dwP™!

Remark: thar(d) is completely different from de Rham cohomology:
0 0 0 0
1. d is not da¥— but d = dz#0, with 9, = — + 90— + 9,0
Sy L0 LY T MSO ‘|‘ p VSO(.}(EMD) +
2. thar(d) is a cohomology “on-shell”



General result on conservation laws

“Normal” theories of reducibility order » (r = —1 for theories without gauge
symmetry; r = O for irreducible gauge theories such as YM theory and GR)
can have nontrivial conservation laws only up to order r + 2:

H, (=0 for O<p<n—r—2;

di"P~0, n>p>r+2 = " Paxdo P!

Hence:
» Non-gauge theories can only have nontrivial conservation laws of 1st order

» Irreducible gauge theories can only have nontrivial conservation laws of 1st and 2nd order

Pure YM theory:

2nd order conservation laws are exhausted by dual field strengths of abelian
gauge fields (jH ~ k, FHV?Y)

no 2nd order conservation law when gauge group is semisimple



Field-antifield formalism, BRST-differential (for Lagrangean theories)

Fields: {¢} = {o,C, ...} P2 antifields: {6*) = {o*, C*, ...}
N~~~
if gauge symm
is reducible

Antibracket: (F,G) = /dnx F(

Master action:

Slo,6"1 = 1Mol + [ d"sg™ocw+ ...

—— ~—~

5 6 6 5)
5p S¢*  6¢* 8¢

such that (5,S) =0

ordinary galuge | gauge master
action transformations algebra equation

BRST differential (coboundary operator):

s=(S, -) (= s2=0)
contains complete information about:

» gauge symmetry (transformations, algebra, ...)
» field egs. (eqgs. themselves, Noether identities, ...)
51ts | |
sp=(5,¢) = _Tqb*; sp==26cp+ ... contains gauge transformations
5fts 51
sd*=(S,¢") = ——; sp*=4+——4... contains (Ihs of) eqgs. of motion

5o %)



Ghost number (gh) and antifield number (af):

© ©* C C* ...
gh|0 -1 1 -2 gh(s) =gh((, )) =1
af | O 1 0 2

Expansion of s in antifield number:

s=6+v+s1+..., af(d)=-1, af(y)=0, af(s1)=1,
0 . “Koszul-Tate differential” — field equations
v . ‘“exterior derivative along gauge orbits” — gauge symmetry

Example: pure YM theory
1
§=—7 / d"z Tt [Fu FH + A*(8,0 + [A,, C]) + C*CC]

sAy = 8,0 + [A,,Cl, sC=—-CC
sA™M = D,F"F — {C,A™'}, sC* = —-D,A™ — [C,C7]

s=90+7
’VA/L — a,uc + [A,ua C]: ’70 — _007 fyA*'LL — _{Cv A*'u}a 70* — _[Ca C1*]



Local BRST cohomology

Defined in the space of local p-forms with ghost number g:

1

wIP(p, p*) = ]; dehl ... dxt? fug ., (x, ¢, 0%, 00,007, .. .)

A >4

wedge T)roduct ghost number g

Local BRST cohomology H9P(s|d): solutions w9P of
swIP + dwdT1r—1 — ¢
with equivalence relation (~)

wWIP ~ WIP + 59 1P 4 g 9Pl

Analogously H,f(5|d): local p-forms wz}g with antifield number k satisfying

5w£—|—dw1]z:i =0, wi ~ wllz—l—éwi_l_l —I—dw],:_l



Consistent deformations and local BRST-cohomology

§=50 4% ghs, (5,9 =0
k>1

Expansion of master equation in g:
(8@, 5y =0, (W), 5M)) +2(5 52y =0,
o sOsM =g (s gy = _o40) g(2)

where s s =0 e s@w0n 4 dulnt =0 with S0 = [0

Trivial deformations: anticanonical transforms. &(¢, ¢*,g), ¢*(o, ¢*,g) s.t.

S[d(e, 9%, 9), 3 (6, 9%, 9), 9] = SO (¢, $*)

oS _ dp  ,_ .. do*
— — S’: :O’ — = (=, , =
5~ (82) N

Y&~

(Z,6%)

S=

o s = (50 =0y = 40 =)

Consistent deformations are determined by H97(s(9)|d) and HL7(s(0)|d)



Conservation laws and local BRS T-cohomology

' - ' 61 (4]
diP(p) R0 & djP =Gy, (9 0) == datt . datrt
& dif+ouiTh=0 with T =26 L (,0) @) datt . datit

1
= HP . (d)~H'TI(s|d) for O<p<nm

H"1(d if n>1
First Noether theorem: H7{(4|d) ~ { %har( ) _ "
N H: . .(d)/{constants} ifn =1
global symms. > -

wl,n:@;_kGi(@)dnm conserved currents

Generalization to conservation laws of arbitrary order:

O0<k<n: HMNO|d)~H7"1(|d) ~ - ~H} "T1(6|d) ~ H E(d)

char

k=n: HYW0|d) ~H""{(8|d) ~ -~ H{(|d) ~ HS,,(d)/{constants}

k>n:  HPOld) ~ HY 1(S|d) ~ -~ H} o 1(8|d) ~ HY_,(5) =0
Furthermore H~*P(s|d) ~ HY(8|d) for k> 0

Local BRST cohomology in negative ghost numbers ~ conservation laws

General result: HJ*(8|d) =0 for k>r+2 (= HE ,,(d) =0 for p<n—r —2)



Relation between consistent deformations and conservation laws in pure YM

SO Z 0, §M = [@WON LB 1.+

One finds (modulo trivial contributions):

=Y wi(A4,A*,C*) P(C)

eH(6|d)

Results on H(4|d):
H})(8|d) = 0 for k > 2, H3(é|d) = {C}}, H}(6|d) = {A"G%(A)d"z}; leads to

k>2:
k=2:
k=1
k=20

,S = 0 (without loss of generality)
LOm

Wy = mijij‘Cjde% where  k;;p = —K;; = constant
Klijk) = fijg — YM type deformations
K(ij)k = Kijk — Peculiar deformations

O N ZA*“G“(A)C’ d"r —— Noether type deformations

0
/ on_Iinv



Renormalization vs. consistent deformations

Extended effective action: Extended action:
= S|gaugefixed + Z hkr(k) S = S(O) + ngs(k)
k k

ST identity: Master equation:

(r,r)y=o0 (5,8) =0

= (5,rD  Y=0 «— HOs|d) |= (5@, 5W)y=0 — HOn(s)|q)

Anomalies: Obstructions at higher order:

(F,F)=A — HY(s|d) -5k N sty =4 — HY(sO)a)
k k



Related developments

» Extended field-antifield formalism [F.B., M. Henneaux, A. Wilch '97/'98]

Extended BRST differential that includes global symmetries
Consistent deformations of gauge and global symmetries

» Asymptotic conservation laws [G. Barnich, FB '01]

Classification and construction of 2nd order asymptotic conservation laws
Analog of Noether theorem for these conservation laws
Charges for gauge symmetries

» Aspects of non-commutative gauge theories
[G. Barnich, FB, M. Grigoriev '02/'03]

Non-commutative gauge theories as consistent deformations of commuta-

tive theories
EXxistence, construction, ambiguities of Seiberg-Witten maps



Conclusion

» Consistent deformations determined by HO9"(s(®)|qd) and H1"(s(0)|q)
» Conservation laws determined by Hg,n(3(0)|d) with ¢ < O
» Antifield dependent BRST cohomology is decisive

» Nontrivial deformations of gauge symmetries are intimately related to con-
servation laws

» Nontrivial conservation laws of higher order exist only in gauge theories

» General theorems and results on (potentially) relevant theories available
(YI\/I, GR, susy and sugra theories, theories with p-form gauge potentials, string theories)



Extended field-antifield formalism
[FB, M. Henneaux, A. Wilch '97/'98]

Inclusion of global symmetries:

Sextl, 97, €. = Sl 61 + [ d"w 0o+ ...

constant ghosts and antifields globals}rmmetry
for globalsymmetries transformations

Extended BRST differential:

2
(Sext s Sext)ext = 0, Sext = (Sext, - Jexts Sext =0

Allows one to analyse consistent deformations of gauge and global symmetries



Asymptotic conservation laws [G. Barnich, FB '01]

Asymptotic cons. law of order p: djisymp — O; trivial if jasymp — dw™P~1

Result for irreducible gauge theories (under suitable assumptions on asymptotics):
ggsy%np «—— asymptotic gauge symmetries (“asymptotic Killing vectors");

when field equations at most of 2nd order:
853” , € 4 : : 95 sV , €

where s¥(p, e) is directly determined by the Lagrangian and gauge symmetries,
and involves the parameters ¢(x) of asymptotic gauge symmetries.

2

2 2
]gsymp — (dn QU)MV

Remarks:
» Noether type theorem for 2nd order asymptotic conservation laws

> Q) = fgasymp can be interpreted as charge of gauge symmetries, e.g.:
Electric charge in electrodynamics:
Q = do; FO' (e = constant)
0>
Energy in GR for asymptotically flat spacetime (ADM mass formula):

B=_ do; " (8;9r1 — Okg;)) (e = constant)



Non-commutative gauge theories
Weyl-Moyal product:

fixfa=nh exp(a 5 g om” 9.) fa, OM = —@"M = constant
Action and gauge transformations:
Tl = =% [ d"Tr (B« F*), By = 048y — 0, A0+ A3 Al
05 A = Our + [Ap % A
Seiberg-Witten map [Seiberg, Witten 1999]:

Ap = Ap(A) = A+ 5907 {Fap + 8aAp, Agt + ...
X=X\ A) =X~ g0 {Aq, 950} + ...

such that

4] = [[A(4Y)] = -1 / "z Tt (Fu FHY)
+196° [ d"aTr (§FasFiuF™ — 3FauFa, F*) + ...

Noncommutative U(N) gauge theory is a type I deformation of ordinary (com-
mutative) YM theory with gauge group U(N)



