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A motivation:

» Meaningful charges for gauge symmetries
(electric charge in ED, energy or momentum in GR...)

Results:

» Correspondence between asympt. reducibility
parameters and asympt. conserved n—2 forms

» Universal formula for n — 2 forms and charges
» Lie algebra associated with charges
» Central charges: formula, cocycle property

» Example: Einstein gravity



The Noether charge puzzle for gauge symmetries

Gauge invariance:
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(Noether identity)

St is on-shell vanishing Noether current:

- oL
St = SH(2,6,4,0) =— =~ 0
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Other currents: 9,(j5 — SE) =0 =

B = SE DM~ O, K = k"

for some “superpotential” k£Y. Noether charge:

Q= /Z(d”_lx)ﬂjg ~ /82 ke, ke = (dn_Qﬂf)W k£

() is surface integral of an n — 2 form k:.
This suggests to derive gauge charges from super-
potentials rather than from currents. But:

» Which k's are meaningful?
» For which gauge parameters 7
» Role of boundary conditions at 927



Example: ED
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5514” = a'ug, 55¢ = iegw

Standard derivation of “the” e.m. current:
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OL _
—— = O, F"F + eypyHa)
i
and thus
OL
=5, B 0y
uﬂ LV
51

i.e., F*Y is a superpotential for this particular choice

More generally, for arbitrary e = e(x):
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Description of asymptotics
o' =) + ¢
with ¢! a background solution,
OL
~ =0
0P" 16(x)
and ¢' bounded by some y!(z),

o' — O(X'(®), x'(z)/d'(x) — 0.

Expansion in ¢'s:
L(z,¢) = 3 L") (z, 0,8 (x)), 7 degreein ¢'s
T

Basic assumption: asymptotic linearizability,

~~
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Notice: the ¢'s are not “small”. In the bulk they
can be large, near the boundary they are small as
compared to ¢'s but do not necessarily tend to zero.



Asymptotic reducibility parameters (ARPS)

» Let y;(z) characterize asymptotics of field eqgs.,

o2
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ARPs are “parameters” f%(z) satisfying

Vol i dx

Vap; — O(x) © iRY(2,3,0) f* — 0 | (1)

» Notice: the solutions of
Rl (z,3,0) f*(z) = 0

are ARPs. These are the “Killing vectors of the
background” . Hence:

ARPs may be interpreted as “asymptotic Killing
vectors of the background” satisfying

RY\(,3,8) f%(x) — o(1/x;)

» Remark: in general, gauge transformations
whose parameters are ARPs need not preserve
the BCs of the fields!

» ARPs satisfying (1) just because they fall off fast
enough at the boundary are called trivial. They
are characterized by f¢ — o(x®) for some x%(z).
Equivalence classes of ARPs:
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Asymptotically conserved n — 2 forms

» These are n — 2 forms k = (dz™ 2),u kM (x, @)
which are linear in the ¢'s and satisfy
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Vol i dk — (dn_la:)u s (z, 9) (2)

for some operators s“i(az,a). Notation:

n—p — 1 Hp+1 I

» Trivial asymptotically conserved n — 2 forms:

L@

+ du

1

for some operators t#¥(z,0) and n — 3 form .

» Equivalence classes:
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» Notice: (2) is the asymptotic analog for n — 2
forms of the conservation law for currents.



Correspondence between k's and f's

121-correspondence between equivalence classes:

[f] +— [kf]
given by

o512

kr=o0psf, Sf= SH(z, f,$,0) B (d" ta),

with o, the homotopy operator for d.

E.g., when S contains at most second order deriva-
tives of ¢'s (standard case), this yields explicitly:
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where
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Charges:

with Nf the charge of the background (a priori arbi-
trary; normalization)



Cohomological derivation of correspondence (sketch)

» Introduce antifields ¢}, C7 with
prd"s — O(xp), Cihd"z — O(RLY (2,3,0) x;)
and Koszul-Tate differential § for L(2):

§ . _ . ., 0L® .
5C04 — Rgl_(xa(ba 0) Pi > 5901 — 3—907;, 5¢Z = 0.

» The condition ;R (z,$,0) f* — 0 turns into

dw +dw™ 1 — 0, W= C¥ fY)d"z, | (3)

a7 (2
and the condition dk — s/“%—;i) (d"1z), into

w1+ dk — 0, (4)

for some w1 respectively.

» Proof of [f] «— [k;]:
(3) & (4) with f ~0 < k ~ 0, implied by coho-
mological properties of d and § (BCs and space
of functions for ¢'s and f's must support these
properties!)

» Formula for kf:
derives from the fact that w™ ! turns out to be

n—1  aut, g, = oan k7 m—1 N



Algebra and central charges

» Commutator algebra of gauge transformations:

[5817 582]9257; ~ szx(a% ¢7 a) Ca(w7 Qb, 617 62)

» [ he bracket of ARPs defined by

[f1, f2]% := C%(=, @, f1, f2)

establishes a Lie algebra g at the level of ARPs
and their equivalence classes because it can be
shown that C%(x, ¢, f1, f») are again ARPs (under
appropriate assumptions on BCs).

» Induced algebra on charges:

[Qfl’ sz] =0pQp, = Q[f1,f2] - N[f1,f2] + 251>
with Z's which are given by

Zf17f2 — /az kf2($, R&(CI’,‘, q37 a)f](_)é7 i)

and represent 2-cocycles on g:

Zflan — _ZfQ,fl ’
21f1,f2) 13 T 2l fal i T 21fsfal 2 = O

At the level of the charges, g may thus change
to some ¢’ differing from g by central extensions



» Remarks:

a) g is not related to the Lie algebra of the gauge
symmetries of L(® (the latter is Abelian, g is in
general non-Abelian).

b) The proof of the cocycle property is nontrivial
and uses properties of the homotopy operator g,.

c) The fact that the Z's are cocycles on g allows
one to determine the possible central charges
from the Lie algebra cohomology of g. It can
thus play a role similar to the Wess-Zumino con-
sistency condition for anomalies.

d) In general finiteness of the charges @Q does not
imply finiteness of the Z’s. Requiring finiteness
also of the Z's may impose extra conditions on
the ARP’s.



Example: application to Einstein Gravity
L= 16in —g(R — 2\) 4+ Lmatter

guv = hpv + §,ul/($)
Assumption: all matter fields are negligible at 9>

» The ARPs are asymptotic Killing vectors &*(x)
of the background metric satisfying

» Our general formula for kf gives in this case

kg/“] (h,3) = e (ﬁp D, HPOVH | 1 HPOVHY p§0>
16m 2

where indices are raised and lowered with g, and
HHovB —= _paBguv _ fuvgel 4 fovgus 4 fubgor
This agrees with Abbott & Deser (1982), and re-
produces for exact Killing vectors of g, the for-
mula of Anderson & Torre (1996) and for asymp-
totically flat spacetimes (guw = nuw) the text-

book expressions in Misner, Thorne & Wheeler
and Landau & Lifshitz.

» For the possible central charges we obtain
1
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Asymptotically AdS spacetime in 3D

» Input data (as in Brown & Henneaux 1986):
r2 2
guv dzt @ dx¥’ = — dt? + > dr2 + 12462
AN=—1/0?
0 : t=tg, r — o0
hit — O(1), hpr — O(r™%), hgg — O(1),

hir — O(r™3), hyg — O(1), hg — O(r3).

» Our condition for the ARPs imposes

Dt&t — O(TQ)a Drffr — O(T_Q)v
5959 - 0(7“2), thfr + Drﬁt — o(r),
Di&g + Dyés — o(r?),  Dr&y + Dyér — o(r).
These conditions are weaker than those imposed
by Brown & Henneaux.

General solution in the space of functions satis-
fying f — O(r™) = O.f — O(r™m~1):

& — LT(t,0),
57“ — —T89¢(t,0)+0(7‘),
e — &(t,0)

where

LOT(t,0) = OpP(t,0), LOrP(t,0) = 0pT(t,0).



» Charges:

2
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— £%(2hyg — rOrhyg).

These charges are finite and agree with those in
Brown & Henneaux (subleading order terms of
Brown & Henneaux's £* do not contribute).

» Algebra and central charges: Finiteness of central
charges imposes

& — LT(t,6)+ 0@ ),
' — —r0pP(t,0) + o(r),
¢ — d(t,0) +0@(72).
Still slightly weaker than in Brown & Henneaux.
Central charges:
2

2
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= 2L A d BT (t,0)05Po(t,0) — (1—2)

Agrees with result in Brown & Henneaux and
Terashima (2001). Algebra: direct product of
two copies of the Virasoro algebra.



Conclusion

» Correspondence between “asymptotic reducibility param-
eters” (ARPs) and asymptotically conserved n — 2 forms
established. In general ARPs are not characterized by the
requirement that gauge transformations with these param-
eters preserve the BCs for the fields, as in other approaches!

» Universal formulae for asymptotically conserved n—2 forms
and central charges in terms of the Lagrangian and ARPs
derived.

» Corresponding Lie algebras characterized, including proof
of cocycle property for our expression for central charges.

» Results successfully tested (in ED, YM, GR).

» Certain ingredients of the approach can possibly be relaxed,
such as the requirement that background be an exact so-
lution of the field equations relevant near the boundary
(asymptotic solution may suffice).

» Weak point: no satisfactory characterization of the gen-
eral types of boundary conditions and function spaces for
applicability of our methods and results — only implicit char-
acterization through cohomological properties of d and §;
check of these properties for particular cases needed.

» Generalization to asymptotically conserved p-forms with
p < n—2 seems straightforward (relevant to reducible gauge
theories).

» Methods and results may have further applications
or extensions (boundary theories, holographic principle,
AdS/CFT correspondence). We are thinking about it.



