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A motivation:

I Meaningful charges for gauge symmetries

(electric charge in ED, energy or momentum in GR...)

Results:

I Correspondence between asympt. reducibility

parameters and asympt. conserved n−2 forms

I Universal formula for n− 2 forms and charges

I Lie algebra associated with charges

I Central charges: formula, cocycle property

I Example: Einstein gravity



The Noether charge puzzle for gauge symmetries

Gauge invariance:

δεφ
i ∂̂L

∂̂φi
= ∂µj

µ
ε , δεφ

i = Riα(x, φ, ∂)εα

Using (∂ε)X = ∂(εX)− ε(∂X) (“integration by parts”):

δεφ
i ∂̂L

∂̂φi
= εαRi+α (x, φ, ∂)

∂̂L

∂̂φi︸ ︷︷ ︸
=0

(Noether identity)

+ ∂µS
µ
ε = ∂µS

µ
ε

S
µ
ε is on-shell vanishing Noether current:

Sµε = Sµi(x, ε, φ, ∂)
∂̂L

∂̂φi
≈ 0

Other currents: ∂µ(jµε − Sµε ) = 0 ⇒

j
µ
ε = S

µ
ε + ∂νk

µν
ε ≈ ∂νkµνε , k

νµ
ε = −kµνε

for some “superpotential” k
µν
ε . Noether charge:

Q =
∫

Σ
(dn−1x)µ j

µ
ε ≈

∫
∂Σ

kε, kε = (dn−2x)µν k
µν
ε

Q is surface integral of an n− 2 form kε.

This suggests to derive gauge charges from super-

potentials rather than from currents. But:

I Which k’s are meaningful?

I For which gauge parameters εα?

I Role of boundary conditions at ∂Σ?



Example: ED

L = iψ̄ /Dψ − 1
4FµνF

µν, Dµψ = (∂µ − ieAµ)ψ

δεAµ = ∂µε, δεψ = ieεψ

Standard derivation of “the” e.m. current:

ε = 1 ⇒ δ1φ
i ∂̂L

∂̂φi
= ∂µj

µ
1 , j

µ
1 = eψ̄γµψ

One has:

∂̂L

∂̂Aµ
= ∂νF

νµ + eψ̄γµψ

and thus

j
µ
1 =

∂̂L

∂̂Aµ︸ ︷︷ ︸
S
µ
1

+ ∂ν F
µν︸ ︷︷ ︸

k
µν
1

≈ ∂νFµν

i.e., Fµν is a superpotential for this particular choice

More generally, for arbitrary ε = ε(x):

δεφ
i ∂̂L

∂̂φi
= ∂µ(ε∂νF

νµ + eεψ̄γµψ︸ ︷︷ ︸
S
µ
ε=ε ∂̂L

∂̂Aµ
≈0

)



Description of asymptotics

φi = φ̄i(x) + ϕi

with φ̄i a background solution,

∂̂L

∂̂φi

∣∣∣∣
φ̄(x)

= 0,

and ϕi bounded by some χi(x),

ϕi −→ O(χi(x)), χi(x)/φ̄i(x) −→ 0.

Expansion in ϕ’s:

L(x, φ) =
∑
r
L(r)(x, ϕ, φ̄i(x)), r: degree in ϕ’s

Basic assumption: asymptotic linearizability,

∂̂L

∂̂φi
=
∂̂L(2)

∂̂ϕi
+ asymptotically irrelevant terms

Notice: the ϕ’s are not “small”. In the bulk they

can be large, near the boundary they are small as

compared to φ̄’s but do not necessarily tend to zero.



Asymptotic reducibility parameters (ARPs)

I Let χi(x) characterize asymptotics of field eqs.,

∀ϕi : dnx
∂̂L(2)

∂̂ϕi
−→ O(χi).

ARPs are “parameters” fα(x) satisfying

∀ψi −→ O(χi) : ψiR
i
α(x, φ̄, ∂) fα −→ 0 (1)

I Notice: the solutions of

Riα(x, φ̄, ∂) fα(x) = 0

are ARPs. These are the “Killing vectors of the
background”. Hence:
ARPs may be interpreted as “asymptotic Killing
vectors of the background” satisfying

Riα(x, φ̄, ∂) fα(x) −→ o(1/χi)

I Remark: in general, gauge transformations
whose parameters are ARPs need not preserve
the BCs of the fields!

I ARPs satisfying (1) just because they fall off fast
enough at the boundary are called trivial. They
are characterized by fα −→ o(χα) for some χα(x).
Equivalence classes of ARPs:

fα ∼ fα′ :⇔ fα − fα′ −→ o(χα)



Asymptotically conserved n− 2 forms

I These are n − 2 forms k = (dxn−2)µν kµν(x, ϕ)

which are linear in the ϕ’s and satisfy

∀ϕi : dk −→ (dn−1x)µ s
µi(x, ∂)

∂̂L(2)

∂̂ϕi
(2)

for some operators sµi(x, ∂). Notation:

(dxn−p)µ1...µp = 1
p!(n−p)! εµ1...µndx

µp+1 . . . dxµn

I Trivial asymptotically conserved n− 2 forms:

k −→ (dxn−2)µν t
µν(x, ∂)

∂̂L(2)

∂̂ϕi
+ du

for some operators tµν(x, ∂) and n− 3 form u.

I Equivalence classes:

k ∼ k′ :⇔ k − k′ −→ (dxn−2)µν t
µν(x, ∂)

∂̂L(2)

∂̂ϕi
+ du

I Notice: (2) is the asymptotic analog for n − 2

forms of the conservation law for currents.



Correspondence between k’s and f ’s

121-correspondence between equivalence classes:

[ f ]←→ [ kf ]

given by

kf = %ϕ sf , sf = Sµi(x, f, φ̄, ∂)
∂̂L(2)

∂̂ϕi
(dn−1x)µ

with %ϕ the homotopy operator for d.

E.g., when sf contains at most second order deriva-

tives of ϕ’s (standard case), this yields explicitly:

k
µν
f =

1

2
ϕi
∂Ssνf

∂ϕiµ
+
(

2

3
ϕiλ −

1

3
ϕi∂λ

)∂Ssνf
∂ϕiλµ

− (µ↔ ν)

where

ϕiµ1...µr
= ∂µ1 . . . ∂µrϕ

i,
∂Sϕiµ1...µr

∂ϕ
j
ν1...νr

= δij δ
ν1
(µ1

. . . δνr
µr)

Charges:

Qf =
∫
∂Σ

kf(x, ϕ, φ̄) +Nf

with Nf the charge of the background (a priori arbi-

trary; normalization)



Cohomological derivation of correspondence (sketch)

I Introduce antifields ϕ∗i , C
∗
α with

ϕ∗i d
nx −→ O(χi), C∗αd

nx −→ O(Ri+α (x, φ̄, ∂)χi)

and Koszul-Tate differential δ for L(2):

δC∗α = Ri+α (x, φ̄, ∂)ϕ∗i , δϕ∗i =
∂̂L(2)

∂̂ϕi
, δφi = 0.

I The condition ψiR
i
α(x, φ̄, ∂)fα −→ 0 turns into

δωn + dωn−1 −→ 0, ωn = C∗α f
α(x) dnx, (3)

and the condition dk −→ sµi ∂̂L
(2)

∂̂ϕi
(dn−1x)µ into

δωn−1 + dk −→ 0, (4)

for some ωn−1, respectively.

I Proof of [ f ]←→ [ kf ]:

(3) ⇔ (4) with f ∼ 0 ⇔ k ∼ 0, implied by coho-

mological properties of d and δ (BCs and space

of functions for ϕ’s and f ’s must support these

properties!)

I Formula for kf :

derives from the fact that ωn−1 turns out to be

ωn−1 ∼ −Sµi(x, f, φ̄, ∂)ϕ∗i (dn−1x)µ



Algebra and central charges

I Commutator algebra of gauge transformations:

[δε1, δε2]φi ≈ Riα(x, φ, ∂)Cα(x, φ, ε1, ε2)

I The bracket of ARPs defined by

[f1, f2]α := Cα(x, φ̄, f1, f2)

establishes a Lie algebra g at the level of ARPs

and their equivalence classes because it can be

shown that Cα(x, φ, f1, f2) are again ARPs (under

appropriate assumptions on BCs).

I Induced algebra on charges:

[Qf1
, Qf2

] := δf1
Qf2

= Q[f1,f2] −N[f1,f2] + Zf1,f2

with Z’s which are given by

Zf1,f2
=
∫
∂Σ

kf2
(x,Riα(x, φ̄, ∂)fα1 , φ̄)

and represent 2-cocycles on g:

Zf1,f2
= −Zf2,f1

,

Z[f1,f2],f3
+ Z[f2,f3],f1

+ Z[f3,f1],f2
= 0.

At the level of the charges, g may thus change

to some g′ differing from g by central extensions

represented by the Z’s.



I Remarks:

a) g is not related to the Lie algebra of the gauge

symmetries of L(2) (the latter is Abelian, g is in

general non-Abelian).

b) The proof of the cocycle property is nontrivial

and uses properties of the homotopy operator %ϕ.

c) The fact that the Z’s are cocycles on g allows

one to determine the possible central charges

from the Lie algebra cohomology of g. It can

thus play a role similar to the Wess-Zumino con-

sistency condition for anomalies.

d) In general finiteness of the charges Q does not

imply finiteness of the Z’s. Requiring finiteness

also of the Z’s may impose extra conditions on

the ARP’s.



Example: application to Einstein Gravity

L = 1
16π
√
−g(R− 2Λ) + Lmatter

gµν = hµν + ḡµν(x)

Assumption: all matter fields are negligible at ∂Σ

I The ARPs are asymptotic Killing vectors ξµ(x)
of the background metric satisfying

ψµνLξ ḡµν −→ 0.

I Our general formula for kf gives in this case

k
[νµ]
ξ (h, ḡ) =

√
−ḡ

16π

(
ξρD̄σH

ρσνµ +
1

2
Hρσνµ∂ρξσ

)
where indices are raised and lowered with ḡµν and

Hµανβ = −ĥαβḡµν − ĥµν ḡαβ + ĥαν ḡµβ + ĥµβḡαν

ĥµν = hµν − 1
2ḡµνhρ

ρ.

This agrees with Abbott & Deser (1982), and re-
produces for exact Killing vectors of ḡµν the for-
mula of Anderson & Torre (1996) and for asymp-
totically flat spacetimes (ḡµν = ηµν) the text-
book expressions in Misner, Thorne & Wheeler
and Landau & Lifshitz.

I For the possible central charges we obtain

Zξ′,ξ =
1

16π

∫
∂Σ

(dn−2x)νµ
√
−ḡ zνµ

zνµ = −2D̄ρξ
ρ D̄νξ′µ + 2D̄ρξ

′ρ D̄νξµ

+(D̄ρξ′ν + D̄νξ′ρ)(D̄µξρ + D̄ρξ
µ)

+4D̄ρξ
ν D̄ρξ′µ + 8Λ

2−n ξ
νξ′µ + 2R̄µνρσξρξ

′
σ.



Asymptotically AdS spacetime in 3D

I Input data (as in Brown & Henneaux 1986):

ḡµν dx
µ ⊗ dxν = −

r2

`2
dt2 +

`2

r2
dr2 + r2dθ2

Λ = −1/`2

∂Σ : t = t0, r −→∞
htt −→ O(1), hrr −→ O(r−4), hθθ −→ O(1),

htr −→ O(r−3), htθ −→ O(1), hrθ −→ O(r−3).

I Our condition for the ARPs imposes

D̄tξt −→ o(r2), D̄rξr −→ o(r−2),

D̄θξθ −→ o(r2), D̄tξr + D̄rξt −→ o(r),

D̄tξθ + D̄θξt −→ o(r2), D̄rξθ + D̄θξr −→ o(r).

These conditions are weaker than those imposed

by Brown & Henneaux.

General solution in the space of functions satis-

fying f −→ O(rm)⇒ ∂rf −→ O(rm−1):

ξt −→ ` T (t, θ),

ξr −→ −r∂θΦ(t, θ) + o(r),

ξθ −→ Φ(t, θ)

where

`∂tT (t, θ) = ∂θΦ(t, θ), `∂tΦ(t, θ) = ∂θT (t, θ).

Agrees with leading order in Brown & Henneaux.



I Charges:

Qξ = lim
r→∞

∫ 2π

0
dθ k

[tr]
ξ (h, ḡ)

16πk[tr]
ξ (h, ḡ) −→ −ξt(

r4

`4
hrr +

2

`2
hθθ −

r

`2
∂rhθθ)

− ξθ(2htθ − r∂rhtθ).

These charges are finite and agree with those in

Brown & Henneaux (subleading order terms of

Brown & Henneaux’s ξµ do not contribute).

I Algebra and central charges: Finiteness of central

charges imposes

ξt −→ ` T (t, θ) +O(r−2),

ξr −→ −r∂θΦ(t, θ) + o(r),

ξθ −→ Φ(t, θ) +O(r−2).

Still slightly weaker than in Brown & Henneaux.

Central charges:

Zξ1,ξ2
= 1

16π lim
r→∞

∫ 2π

0
dθ

2

r
∂θξ

r
1 ∂θξ

t
2 − (1↔2)

= 2`
16π

∫ 2π

0
dθ ∂θT1(t, θ)∂2

θΦ2(t, θ)− (1↔2)

Agrees with result in Brown & Henneaux and

Terashima (2001). Algebra: direct product of

two copies of the Virasoro algebra.



Conclusion

I Correspondence between “asymptotic reducibility param-
eters” (ARPs) and asymptotically conserved n − 2 forms
established. In general ARPs are not characterized by the
requirement that gauge transformations with these param-
eters preserve the BCs for the fields, as in other approaches!

I Universal formulae for asymptotically conserved n−2 forms
and central charges in terms of the Lagrangian and ARPs
derived.

I Corresponding Lie algebras characterized, including proof
of cocycle property for our expression for central charges.

I Results successfully tested (in ED, YM, GR).

I Certain ingredients of the approach can possibly be relaxed,
such as the requirement that background be an exact so-
lution of the field equations relevant near the boundary
(asymptotic solution may suffice).

I Weak point: no satisfactory characterization of the gen-
eral types of boundary conditions and function spaces for
applicability of our methods and results – only implicit char-
acterization through cohomological properties of d and δ;
check of these properties for particular cases needed.

I Generalization to asymptotically conserved p-forms with
p < n−2 seems straightforward (relevant to reducible gauge
theories).

I Methods and results may have further applications
or extensions (boundary theories, holographic principle,
AdS/CFT correspondence). We are thinking about it.


